
www.manaraa.com

Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

1-1-2015

A Software Development Model for Building Security into A Software Development Model for Building Security into

Applications for the Android Platform Applications for the Android Platform

Christopher Patrick Ivancic

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Ivancic, Christopher Patrick, "A Software Development Model for Building Security into Applications for
the Android Platform" (2015). Theses and Dissertations. 259.
https://scholarsjunction.msstate.edu/td/259

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/259?utm_source=scholarsjunction.msstate.edu%2Ftd%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

www.manaraa.com

A software development model for building security

into applications for the Android platform

By

Christopher Patrick Ivancic

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2015

www.manaraa.com

Copyright by

Christopher Patrick Ivancic

2015

www.manaraa.com

A software development model for building security

into applications for the Android platform

By

Christopher Patrick Ivancic

Approved:

David A. Dampier
(Major Professor)

Donna S. Reese
(Committee Member)

Alfred Christopher Bogen
(Committee Member)

Robert Wesley McGrew
(Committee Member)

T. J. Jankun-Kelly
(Graduate Coordinator)

Jason M. Keith
Dean

Bagley College of Engineering

www.manaraa.com

Name: Christopher Patrick Ivancic

Date of Degree: August 14, 2015

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. David A. Dampier

Title of Study: A software development model for building security into applications
for the Android platform

Pages of Study: 106

Candidate for Degree of Doctor of Philosophy

The popularity of smart phones has risen throughout the years since first introduced.

With the popularity of the devices growing so too has the number of malicious applications

flooding the devices’ marketplaces. With more usage there becomes a larger target for

malware and exploitation creation. As threats to these devices continue to grow there is

a constant need for security to safeguard against these threats. Some attempts to protect

smart phones involve building software to analyze applications running on the devices.

This attempt has cut back on the amount of malicious software on the marketplace. These

attempts however only catch malicious applications after they have been running.

This dissertation presents the Secure Android Development Model. The goal of this

model is to contribute to security of these devices by having a development model that

implicitly builds security into applications. The model ensures a minimal amount of open

permissions thus limiting the number of attack vectors that malicious software can make

www.manaraa.com

on the devices. By following the model, developers will have all information available

during development to make appropriate security decisions in their applications.

Key words: smartphone, software life cycle, Android, permission, malware

www.manaraa.com

DEDICATION

I dedicate this dissertation to my wife Nicole Ivancic and my sons Henry and Jacen.

The constant support has made my entire time in graduate school possible.

ii

www.manaraa.com

ACKNOWLEDGEMENTS

The author would like to express his gratitude to many individuals who provided sup-

port through this research work. First I would like to thank my wife Nicole Ivancic for all

of her patience and support through my dissertation process. Without it I would have had

a much harder time staying focused. I would like to thank my family for their support as

well. Dr. David A. Dampier, I would like to thank you for all of the guidance and help

given to me throughout my research and supporting me along the way. To Dr.s Bogen,

Reese, and McGrew I would like to thank for serving on my committee and contributing

to the process. I would like to thank Dr. Nan Niu who gave help and guidance with his

expertise in the field of Requirements Engineering. I would like to thank the administration

at the Computer Science and Engineering department and Bagely College of Engineering

at Mississippi State University. I also would like to thank the Software Engineering Senior

Design team for helping test my research and going through the process with me, and to

all CSE students and industry developers who helped test the model I thank you as well.

iii

www.manaraa.com

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

1.1 Smartphones and Mobile Devices 2
1.2 Built in SmartPhone Security . 4
1.3 Malicious Software Design . 6
1.4 Contribution and Hypothesis . 8

2. PREVIOUS WORK . 11

2.1 Threats to Mobile Devices . 11
2.1.1 Malicious Application Types 12
2.1.2 Attack Goals of Malware on Mobile Devices 14
2.1.3 Built In Security . 18

2.1.3.1 Application Markets 18
2.1.3.2 Application Permissions 19

2.2 How Malware Attacks Mobile Devices 20
2.2.1 Application Collusion . 21
2.2.2 Privilege Escalation . 24

2.3 Current Security Attempts . 26
2.3.1 Behavior Based Analysis and Security 27
2.3.2 Policy Based Security . 30
2.3.3 Permission Based Security 35

2.4 Software Development Life Cycle 38
2.4.1 Traditional SDLC . 38
2.4.2 Flexible SDLC . 42

iv

www.manaraa.com

2.4.3 Summary of Reviewed Works 46

3. SECURE ANDROID DEVELOPMENT MODEL 47

3.1 Inconsistent Permission Usage 47
3.2 Permissions Defining . 49
3.3 Secure Android Development Model 52

3.3.1 Permission Gathering . 53
3.3.2 Manifest Design . 56
3.3.3 Application Development 58
3.3.4 Test Permissions . 58
3.3.5 Application Delivery . 59

4. EXPERIMENTAL DESIGN . 60

4.1 Testing Plan . 60
4.1.1 Model Verification and Test Case Design 61
4.1.2 Test Environment . 63

4.1.2.1 Test Group . 65
4.1.2.2 User Case Study 67

4.2 Experiment Results . 68
4.2.1 Permission Generation Results 69
4.2.2 Permission Generation Analysis 73
4.2.3 SADM Usage Results . 74
4.2.4 SADM Usage Analysis 81

4.3 Main Hypothesis and Research Questions Results 82
4.3.1 Is the model easy to use? 83
4.3.2 Does the model help with determining what permissions to

use ahead of time? . 83
4.3.3 Does the model result in developer specified minimal per-

mission usage? . 84
4.3.4 Can minimal permission usage be built in from the begin-

ning of development? . 84
4.3.5 Can the model be used by someone with little to no prior

experience with application development on Android? . . . 85
4.3.6 Research Question Summary 85

5. CONCLUSION . 88

5.1 Contribution . 88
5.2 Publication Plan . 90
5.3 Future Research . 90

v

www.manaraa.com

REFERENCES . 92

APPENDIX

A. PARTICIPANT DEMOGRAPHICS . 95

B. PARTICIPANT INFORMED CONSENT FORM 97

C. PARTICIPANT POST-SURVEY QUESTIONS 100

D. GENERATED MANIFEST FILE . 103

vi

www.manaraa.com

LIST OF TABLES

2.1 Mobile Malware Behavior Count . 14

2.2 Applications with Duplicate Permissions by Market Category 37

3.1 Statements About a Permission to Determine Its Priority 57

4.1 Pre-Test Analysis Application Type . 61

4.2 Permission Usage . 62

4.3 Requirements and Associated Permissions 64

4.3 (continued) . 65

4.4 Participant Demographic . 66

4.5 Permission Results Summary . 70

4.6 Initial versus Final Permission List . 71

4.7 Effectiveness for planning permissions . 72

4.8 Planning permissions before implementation 73

4.9 Planning strategy before test . 75

4.10 Understanding and Following the SADM 76

4.11 Feasibility of the SADM . 77

4.12 Difficulty Using the SADM . 78

4.13 Strengths of the SADM . 79

4.14 Weakness of the SADM . 80

vii

www.manaraa.com

4.15 Research Question Summary . 86

viii

www.manaraa.com

LIST OF FIGURES

2.1 Timeline of Malicious Applications Between 2009 and 2011 12

2.2 Two App Collusion Attack . 23

2.3 Privilege Escalation Attack . 25

2.4 General Life Cycle . 39

2.5 Waterfall Lifecycle Model . 41

2.6 Spiral Model . 43

2.7 Rapid Application Development . 45

3.1 Breakdown of Bluetooth Access Requirement 51

3.2 Breakdown of More General Requirement 52

3.3 Secure Android Development Model . 54

3.4 Decomposition of Requirements to Permissions 55

ix

www.manaraa.com

CHAPTER 1

INTRODUCTION

Smartphones have become more widely used with more than half (56%) of US citi-

zens using smartphones[27]. Standard cellular phones (cell phones) were used for making

phone calls and sending Short Message Service (SMS) messages. As such, standard cell

phones provided little multimedia capabilities. Smartphones are designed as multimedia

devices with the ability to read email, read and write documents, and browse the Inter-

net. The emphasis on phones being used for multimedia purposes has made smartphones

a more central part of people’s days.

Smartphones are used more and more by individuals and companies as ways to stay

connected to each other. Smartphones have grown in popularity making application devel-

opment more mainstream. Increased application development leads to apps for the devices

that make storing, retrieving, and sharing information easy to accomplish. With the ease of

information sharing, smartphones make it that much easier to stay connected for business

and personal use.[27]

The growth in usage has led to growth in malicious software being written to target the

increased user base. Security of these devices is a growing concern and many attempts at

securing them have been made[2, 4, 7, 8, 15, 23, 29, 32]. Most attempts focus on fixing a

1

www.manaraa.com

problem with the operating system (OS) or finding running malware and removing it. This

dissertation proposes a model for software development for the Android operating system

that will implicitly build security into new applications developed attempting to minimize

the risk of these applications being exploited by malicious software on the devices. The

goal is to build the protection into the applications to prevent misuse, rather than detect the

misuse and remove it.

This chapter will define what smartphones and mobile devices are and will discuss how

malware is written for these devices. It will then introduce the hypothesis and contribution

of this dissertation.

1.1 Smartphones and Mobile Devices

Smartphones differ from standard cell phones in that they provide additional function-

ality. A cell phone’s primary functionality is to send and receive phone calls and text

messages. ”Smartphone” is the term given to a device that is still a cell phone, but more

emphasis is placed on the device’s additional functionality. Smartphones are designed to

be portable media centers in addition to being a phone.

Internet usage and email reading were early marketing points for smartphones. With

Internet capabilities, these devices became more like personal computers. These devices

are easy to use and can store a user’s personal documents to be read and used at any time.

The convenience that smartphones allow has led to growth in their usage over the years

and smartphones are now used by more than half of American adults[27].

2

www.manaraa.com

Attempts at building these Swiss Army Knife devices began as early as 1993 with the

IBM Simon[26]. In addition to being a cell phone, the device also acted as a Personal

Digital Assistant (PDA) and as a mobile fax machine (it could send digital documents to

other fax machines). This phone was expensive at $899 and was extremely cumbersome.

Palm Inc. introduced the Palm Pilot in 1996. The Palm Pilot was not a mobile phone

but it was a mobile PDA. This device became commonly used to store documents and sync

calendars. The device was light and inexpensive, thus it caught on more quickly than other

devices of the time.

Additional progress was halted until around 2002 when Research In Motion developed

the Black Berry. This device was the first commercial success of combining a Palm Pilot

with a mobile phone. This device had Internet and email capabilities in addition to being

a phone. The Blackberry was mostly used for businesses and large enterprises. This made

the device reside solely within a niche market.

The first success of non business acceptance of smartphones came in 2007 when Apple

released the iPhone. Apple combined all of their multi-media features present in their iPods

with a mobile phone. These devices could browse the Internet, check email, play movies

and music, read and write documents, take video and pictures, and play games. These

devices were marketed for personal use compared to Blackberry’s market of business use.

Shortly after release of the iPhone, Google released its new mobile device operating system

Android. This gave Apple its competition in the same personal use market for smartphones.

These two companies successfully marketed the idea of a smartphone to home users and

use of these devices has been increasing ever since.

3

www.manaraa.com

Today, users have access to many different models of iPhone, many different models

running Android OS, and now Microsoft has a mobile Windows OS for smartphones in

the market as well. Smartphones have become so ubiquitous that these companies have

even started taking the idea of a smartphone and putting it on larger devices giving us our

mobile tablets. Apple has several versions of the iPad and many different Android based

tablets exist. E-readers such as Nook Color and the Kindle Fire run their own version of

Android. In addition to smartphones, these other mobile devices have many of the same

features. This also means that they have many of the same flaws. All of these devices have

security issues and the more widespread use they gain, the more they become the targets

of malicious software.

The growing threats to these devices warrant an increased effort in protecting them.

Security models need to be developed and updated to react to the growing problems facing

these devices.

1.2 Built in SmartPhone Security

One way to secure a computer is to limit the privileges of the user. When a user acquires

a new smartphone, the policy in place is to not allow the user to have root level access. User

level access is granted by the OS to prevent the user of the device from having complete

control of it. This is done as a form of security by having the user require permission from

the OS to install new applications instead of being able to install anything the user wishes.

Several techniques exist to give system level access of the smartphone to the user.

These techniques are referred to as jailbreaking or rooting the device. This technique is

4

www.manaraa.com

accomplished by exploiting different bugs in the system to flash a hacked version of the

OS onto the device. This new version of the OS does not have the permission blocks that

prevent root access to the user. The majority of users do not ”jailbreak” their phones and

leave the normal OS installed.

Companies, such as Google and Apple, rely on the restricted access to achieve a level

of security. By rooting the device, the user voids any support and security these companies

are building into the system and are left on their own. For non-rooted devices, companies

maintain control over their App stores and marketplaces. Whenever a new application is

built it is submitted to the marketplaces for distribution. Upon arrival to the marketplaces

a team analyzes the app for potential problems before it is released. The degree of scrutiny

differs between the companies. Apple spends more time in the beginning checking Apps

for known problems before being released but offers little information about the app itself

upon installation. Google allows the community to decide if an app has flaws by giving

permissions the app needs upon installation and will remove Apps the community deter-

mines unsafe.

Marketplaces are designed to minimize the threats of malicious software from being

installed on a user’s device. This does make it harder for malicious software to spread

but many techniques are still used to infect devices using normal user level privileges

[14, 21, 22, 17, 9]. When apps like this are discovered, they are eventually removed from

the marketplace but by then the damage has been done. The current security policies of

these OSs, like iOS and Android, attempt to limit these actions but still need improvement

5

www.manaraa.com

and many attempts [15, 29, 4, 3, 23, 6] to improve security and attempts to educate users

are still being designed and implemented.

1.3 Malicious Software Design

Developers have different reasons for designing malware (financial gain, blackmail,

novelty, etc.), but any malicious software needs users to install it. It is for this reason

that malware authors design their malware to target operating systems used by the most

people.[14] A malware developer will develop malicious software for Windows over other

operating systems simply because of how much more widely used it is. As other OSs for

personal computers have grown more popular, so too has the interest in creating malware

for these operating systems.

Smartphones face the same trend in malicious software. When the technology was first

introduced, businesses were the primary consumer. Blackberrys were the dominent device

and the market was small and specific. With such a small target for developers, there was

little malware written for these devices[14]. As mentioned in section 1.1, smarthpones

became more widely used by casual consumers. It became possible for people to use the

devices for more personal reasons from entertainment to keeping financial records close

by. As more smartphones were being sold, the app markets for these devices received

more app submissions. With more apps on the market, the desire to use these devices for

personal use continued to grow causing the smartphones to be more widely used[14].

The increased usage of smartphones also increased the reliance on the devices allowing

for more targets of malicious software. No longer would the malware be used to target a

6

www.manaraa.com

smaller niche group, but now it would be used to target a more diverse group of individ-

uals giving more opportunity for their malware to be installed. What the world saw after

2007 was an increase in malware developed specifically for smartphones appearing on the

markets[14].

Malware authors had two problems to face with these new targets: They had to get

around the markets and they had to deal with user level access to the device. Unlike normal

desktops, the smartphones only give the user non-root access to the device. This makes it

harder to write code to access system level functionality and install the code. Third party

apps have a limited access to the phones forcing malware development to conform to the

same user level restrictions. The user cannot install an application that requests system

level permissions. Malware has to be able to perform its functions at a user level in order

to work on these devices.

The other problem facing malware developers is the app market. Android allows the

ability to install ”Unknown Sources” meaning that the app did not specifically come from

the Android market but from a third-party programmer. This can get around the market but

have to make the app easily available and is hard to advertise your app without being on

the market. To hit the largest number of people, a developer needs to place his or her app

on the market. With the app on the market, teams working for these companies have the

power to remove any app if found to be malicious either by their own security team or as

a response from the users. To get the app on the market, it is first tested for vulnerabilities

before being released. This means that the developers have to give their malware to the

companies and hope the malware passes inspection and is placed on the app stores.

7

www.manaraa.com

The malware designed for these devices attempts to hide its activities. An app that is

taking personal information is easy to spot and will quickly be removed. An app that can

hide its activities by going through other apps on the device is much harder to track[21, 9].

While attempts have been made to scan for these types of attacks, if normal applications

did not have vulnerabilities, these types of attacks would not be feasible. This dissertation

looks at the approach of removing vulnerabilities from non-malicious apps in development.

1.4 Contribution and Hypothesis

When dealing with malicious software on smartphones, users can attempt to find the

malware and remove it. Attempts at detecting malicious activity have been made and

require the application to be installed and running on the device[15, 4, 2, 23]. When this

happens, the malware is installed and running until it can get detected. This method of

protection does not prevent the malicious software from running; rather, it attempts to find

and remove the malware in a reactionary way.

Educating users of the risk with installing applications will help reduce the amount

of malware installed on their devices. The difficulty of this approach is preventing the

malware from being installed. Attempts have been made to educate users on the effects

of malware on devices and give policies to the users that will minimize their risk from

malicious applications[22, 3, 8, 19]. A policy based approach helps give guidelines to the

user of the device to help protect it. This policy forms the rules the user must follow for

his or her device to maintain an accepted level of security. The ultimate security of the

8

www.manaraa.com

device is still in the hands of the user. While education helps the user with decisions, the

decisions are still made by the end user.

Android gives the user a policy for using the device and gives a set of tools designed

to scan for installed and running malware. This ultimately puts the security in the user’s

hands. As mentioned before [21, 9], most malware for these devices runs in user space

and relies on vulnerabilities in the permissions of currently installed apps to accomplish

their goals. This malware uses currently installed apps to retrieve any information it needs

from the system while hiding its intention. Instead of relying on the user making the best

decision, most permission-based vulnerabilities can be prevented during the development

of the application.

Software development models have been made with the purpose of giving a process to

developers for designing and building software. The goal of these models is to have the

developers plan every step in the building of the software with the end result being software

with fewer bugs and shorter maintenance phases. The better the software is built in the

beginning, the less time is spent fixing errors in the final product.[13] This is accomplished

by deciding complete functionality before the development begins.

Preventing permission misuse on mobile devices is a big step in preventing malware

from misusing the device. When a developer begins building an app, it is easy to leave

permissions open for later use or for functionality that the developer may want later on in

development.[11] By planning before building, a developer can establish all permissions

needed ahead of development. This will lead to permissions only being set that the devel-

oper needs to be set. This dissertation proposes a model of software development that is

9

www.manaraa.com

tailored specifically to designing permissions of an Android application in an attempt to

minimize the permissions used. With fewer permissions being open, an app has a much

lower chance of being misused by other apps. Much like a software development model is

designed to map out functionality before programming, the author’s model is designed to

map out permissions and functionality before development and includes a checking process

in the last phase to ensure minimal permission setting.

The hypothesis of this dissertation is as follows:

The use of the Secure Android Development Model will allow developers to de-
termine the minimal set of permissions needed for the application to function,
resulting in an app that has a minimal set of permissions.

The researcher defines minimal permissions as the set of permissions of an application

such that the removal of any one of the permissions will prevent the application from

meeting its functional requirements. An application should not have any more permissions

than is absolutely necessary to function. Every permission opened is another vulnerability

that can be exploited and this dissertation attempts to solve the problem by preventing

permission misuse at the developer level, not the user level.

The rest of the dissertation is structured as follows: Chapter 2 will discuss all previous

work done with mobile device security and the Software Development Life Cycle. Chapter

3 discusses the Secure Android Development Model. Chapter 4 details the testing proce-

dure for the model. Chapter 5 will discuss the analysis of the tests from chapter 4. Chapter

6 will detail the conclusions and future work of the dissertation.

10

www.manaraa.com

CHAPTER 2

PREVIOUS WORK

There has been an increase in malicious software flooding the app markets for smart-

phones. This is a result of the growing usage and growing number of different types of

smartphones. With the increased threat of the devices, the need for securing them is a

growing concern. This chapter outlines the work previously done in this field.

2.1 Threats to Mobile Devices

With the increased usage in smartphone devices, there has been an increase in instances

of malicious software making its way to the devices. With more users of these devices,

there is more incentive for developers to get malicious software installed on these devices.

Adrienne Felt et al. compiled a survey of malware that was found out on the marketplaces

between the 2009 and 2011.

Figure 2.1, taken from [14], displays the timeline of malicious applications. From this

timeline, the researchers showed that these devices are susceptible to malicious attacks like

other digital devices. The amount of malware on Android started growing faster towards

the end of the timeline. This is around the time Android started gathering a larger market

share.[14] This section outlines the kinds of malicious applications and what their attack

goals are on these devices.

11

www.manaraa.com

Figure 2.1

Timeline of Malicious Applications Between 2009 and 2011

2.1.1 Malicious Application Types

Malicious applications can be installed and run on the device like any other application.

These can be downloaded from websites and side loaded (a process of installing an appli-

cation from an unknown source) or they can be downloaded from the market place. While

most market places do build in checking to filter out applications that could be malicious,

there are some that sneak by [14, 33]. These applications can all have a different reason for

existing but they can be classified into three main categories according to [14]: Malware,

Personal Spyware, and Grayware.

Malware is an application that gains access to the device for the purpose of stealing

data, damaging data, or harassing the user. The malware can reside on the marketplace

with hidden usage or can be directly given to the user by the attacker. Once installed, the

malware allows the user to connect remotely to retrieve data. Trojans, worms, botnets, and

viruses all fall under malware by this classification and all can exist on mobile devices.

Personal spyware has some similarities to malware. The overall goal is to install soft-

ware on the device that can monitor the usage of the device. The user of the software

12

www.manaraa.com

knowingly installs it on the device with the intent of monitoring how the device is used.

This is done to spy on someone close by whose device the user has physical access to,

or simply to monitor his or her own personal phone usage. Then end result is similar in

that the software can monitor data usage, phone calls, text messages, etc. and allows a

particular user to retrieve this information as his or her will.

Grayware is the term given to applications that collect user data for the purposes of

companies to gain targeted marketing information. These applications are not defrauding

the user because the companies will disclose the purpose of the application and the purpose

of the data collection. Companies can use it by giving ambiguous descriptions of the

purpose of the software. Usage of this software is legal.

While each application that can be developed as a threat has its own specific purpose on

a case-to-case base, the application can be classified in one of the three above threat types.

Malware is the one where the user of the device is tricked in some way into installing a

piece of software whose overall goal is to compromise the security of the user’s device.

With the other two types, the user is aware of the applications intent upon installation.

Even though a user intends for an application to have access to some of the personal data

of the device does not remove it as a threat. These applications are still a threat to the

security on the device because there is a user level application (as opposed to the OS level

applications built into the devices) that can access personal information of the device. With

permission settings used to place some security into the OS, another user level application

that is malware can still compromise one that is not and now the malware has access to the

information as well[9, 12, 33].

13

www.manaraa.com

2.1.2 Attack Goals of Malware on Mobile Devices

In their research of mobile malware in the wild [14], Adrienne Felt et al. collected 46

individual pieces of malware and classified it by its behavior. Table 2.1 is taken from [14]

and summarizes the behavior of the malware observed.

Table 2.1

Mobile Malware Behavior Count

Behavior Count

Exfiltrates user inforamation 28
Premium calls of SMS 24
Sends SMS advertisement spam 8
Novelty and amusement 6
Exfiltrates user credentials 4
Search engine optimization 1
Ransom 1

One common goal of malware developers is to gain information (personal or other)

about the user of the system infected. This can be anything from passwords, to emails, to

documents with account information. The same is true for malware running on mobile de-

vices. These devices are becoming more ubiquitous and contain more and more of users’

personal information [5]. Malware exists on these devices for stealing user information

and user credentials from the devices. Typical user credentials stolen are passwords and

bank account information. These devices allow for a user to check banking information

while away from their personal computers. This malware intercepts the keyboard presses

and reads the information presented back to the user. The user information stolen can be

14

www.manaraa.com

information such as location, contacts, installed applications, text messages, and browser

history. This is all information that is used for marketing. The malware takes this informa-

tion and the creator sells this information to advertising and marketing companies. A large

portion of malware in existence is designed to harvest user data for these purposes.

Malware can also be responsible for taking control of the mobile device and using

the device to make phone calls and send SMS to premium numbers (1-900 numbers).

This malware is capable of sending these messages and making silent phone calls to these

numbers without having the device even display the number pad [14, 33]. The malware is

allowing charges to be made by these numbers to the phone companies. The malware is

capable of doing this by having permission of the messaging and phone call systems. The

device will be in a user’s pocket and dial out to this number without any sort of indication

from the phone that the call is being made.

Along the same lines as dialing out to a premium number, some malware is capable of

using the SMS capabilities of one device to send out a group message to the contact list of

the user’s device with advertisement messages. This is no different from a company send-

ing out a spam SMS from their computers but is illegal in most countries.[14] The malware

is designed to get around this problem by masking the company doing the spamming by

getting non-commercial devices to spam the messages for them. By having these devices

send the spam message themselves, it does not directly point back to the original source

and has to be traced back through all the compromised devices.[14]

Some malware exists for the sole purpose of existing. This type of malware is created

out of the novelty of having it out ”in the wild”. Rarely does the creator of the malware

15

www.manaraa.com

intend on using the application for any real malicious use. This malware exists because

the creators want to test or prove something. When a new update to an iPhone comes out

and a developer notices a bug in the update, the developer can create an app to exploit

this bug. The developer does not intend to hurt people’s devices but wants to test to see if

the malware will work. Some companies offer marketplaces to try and keep the malware

from being placed on the marketplace. This causes another test for developers to try and

take on. A developer can look at the marketplace and attempt to try and get an application

placed on the market with malware packaged in with it. These pieces of software are not

attempting to steal the user information from the devices. This software is designed for

the amusement of the developer but still has compromised access to the mobile device it is

installed on and this can lead to exploitation from other malware on these devices[14].

Malware can also be used for blackmail. This type of malware is intended to take

control of the mobile device and restrict usage and access from the user. The malware

developers will lock a device out of use and only unlock it after being paid. A Dutch worm

(no official name, the hacker who made it was Dutch) would lock the screens of iPhones

and demand that the users pay 5 euros to have their screens unlocked[14]. A desktop Trojan

Kenzero existed to steal the browser history of the infected computer[14]. This information

was then published publicly on the Internet with the user’s name associated with it. For

1500 yen, the information would be taken down. As mentioned before, malware exists on

these devices that can read a person’s Internet browsing history. The same idea exists on

malware of using this information in attempt to extort money from the user[14].

16

www.manaraa.com

Just like using malware to send SMS and phone calls to premium numbers, malware

can also use these devices to send SMS and web searches to certain websites. The idea

is the same as the premium number spamming. The malware uses the device to generate

traffic to these sites. This is not done to charge money to the phone companies like calling

a premium number but is done to increase traffic to websites. Search engines prioritize

results from searches based on the number of traffic hits certain sites receive. By having

different devices constantly search and go to a site, it inflates the traffic the site is receiving

helping make them a larger priority by the search engines[14, 33]. Researchers found this

to be a low priority malware but this type of malware has grown more common. Developers

making malware to generate network traffic has caused the growth in this type of attack.

Advertisement on these sites pay for hits and traffic flow of the sites. By having mobile

devices contact these sites, it generates more money from the advertisers[7, 33].

A problem with the malware on these devices is how hard it is to track down. Just

like advertisers using malware to have other devices spam SMS advertisements makes it

hard to track down the original source of the spam, malware can hide its activities. It can

be done by going through other apps [9] or it can be responsible for downloading the apps

actually performing the malicious behavior.[33] The malware DroidDreamLight would not

be responsible for the information stealing of the devices. Instead, it would connect to an

outside repository and download other applications. When the user realized there was

malware on the device, and tracked it down to these new apps, he or should could remove

them. When this happens, DroidDreamLight would re-download them and the process

started over again.

17

www.manaraa.com

2.1.3 Built In Security

The vendors of smartphone operating systems have included some built in security for

prevention of misuse of the devices. They offer a marketplace for any apps for the devices

and include some form of permission-based access for the software once installed.

2.1.3.1 Application Markets

The smartphone OS vendor encourage the users of their devices to have all of their

purchases and downloads of various apps through a centralized market. This market gives

the vendors more control over what applications they will allow users to install on the

users’ devices. With the control over the applications placed on the markets, the vendors

have an easier time in finding possible malware and keeping it off of the market. Users

who keep all of their apps updated through the market have the vendor’s protection against

malicious software[33].

Apple iOS has strict control over its market. The way they do this is by not allowing

users to install applications from alternate sources. Users of iOS devices must use the

market for any application they want. Short of a jailbreak on the device, the users have

no option in installing applications that do not exist on the market. This allows Apple to

have a strict review process. When a developer finishes an app, he or she posts it to the

market. The app must then go through a strict review process. The goal of the process is

to prevent as much malware as possible from being placed on the marketplace. The review

policy does not allow for personal spyware to be on the market, but can allow grayware to

18

www.manaraa.com

appear on the market. Apple will remove any grayware that it finds after the process and

any spyware and malware that managed to slip past the review as soon as possible[14].

Android provides a market for their apps as well, although the review process is much

more lenient when compared to Apple’s. Google allows for users to install apps from

alternate sources by enabling the Unknown Sources option. Because of this capability,

Google’s policy on reviewing apps prior to listing is minimal and they are only reviewed

after they have been uploaded to the market. Google relies more on user input for tracking

down malicious software. The Android security team does review applications based on

user feedback and will remove malware after review. The security team will also remove

any known malware remotely from a user’s device[14].

2.1.3.2 Application Permissions

In addition to having a centralized market for applications to exist, the vendors attempt

to keep interaction of the apps among each other limited. The operating systems use a

permission-based policy when determining what the applications are allowed to access.

Whereas Apple has stricter policies regarding the review process for their market, Android

has stricter policies for permission enforcement.

Apple iOS attempts to control the applications by having them run through their mar-

ket. As a result the applications are installed and allowed to access whatever they were

programmed to access without consent from the user (the consent comes in the fact that

it passed the review process and is downloaded by the user). Any extra permissions that

19

www.manaraa.com

iOS needs approval for, such as location and notifications, require user acceptance during

runtime[1, 14].

Google’s policy for Android is that each application must request permission to access

any other part of the device or any other application running on the device. When an

application is installed on an Android device, the user is prompted with all the permissions

the app is requesting. The user has to approve these permissions, which are set when the

app is installed cannot be changed during run-time[14].

The permissions are designed to let the user know ahead of time what controls the

application needs. The user needs to approve the apps usage of these permissions before

the app is installed. This falls in line with Google’s philosophy of having the security be

more user oriented. Google expects the users to report problems to their security teams.

Apple’s approach corresponds to having the market control all apps installed on the device

with little user control. While having users agree to let apps have certain permissions

does give more control, too many permissions can make certain apps unsafe even if it was

unintentional[33].

2.2 How Malware Attacks Mobile Devices

Mobile devices are just as susceptible to vulnerabilities as any computer. Malware not

only exists but continues to grow with more mobile devices being used[14]. Knowing that

this malicious software exists is not enough to protect the devices, but knowing how these

devices are attacked and exploited will help in building prevention from these attacks. Built

in security such as markets and permission policies, are good to filter out most malware yet

20

www.manaraa.com

is not sufficient to protect from all. Permissions help cut down on malware, but overused

permissions can actually allow for more exploits to happen than intended[5, 9, 10]. This

section outlines how these attacks are possible.

2.2.1 Application Collusion

With the focus on permission based security on mobile devices the user has a need to

know what permissions are being used by the application at install time. With Android,

when the application is installed, a list of permissions is given and the user needs to accept

them. If the user does not accept the permissions then the application is not installed

preventing any harmful application from running. This policy is based on the user being

the one who determines which permissions are acceptable for an application to have. The

user acceptance of the policy also means the user must predict what harm can be done based

on the permissions. Google offers the ability for Android phones to be able to sync contacts

between the user’s phone and his or her Google account. To do this, the application has

permission to the contact list of the device as well as to network communication. This is not

necessarily bad but a user who sees that an application requires both could be attempting

to steal his or her information[5, 21].

Collusion attacks capitalize on the user having to make guesses as to the intent of the

application based on permissions alone. With Apple iOS not having the same permission

policy as Google, it is up to the market security team to be able to detect these attacks.

Google’s policy once again resides with the user checking the permissions on install. Either

21

www.manaraa.com

way, the attack works the same way with the end result being a different analyzer trying to

find the malicious apps.

The idea of a collusion attack is to have two or more applications that independently

have very few permissions and access to the device. However, when these applications

work together they act as one application with all of the permissions together[21].

Figure 2.2 shows a basic collusion attack with two independent apps. Application A is

a contact list manager application. This app only needs access to the Personal Information

permission. It is this permission that houses the contacts list for the device. Application

B is an app that requires some outside network access, such as a weather app. App B

needs permissions set for Network Access. The user of the device downloads both of these

applications independently of each other, sees that limited access each one is requesting,

and agrees to install them. The collusion happens when both apps work with each other

combining their permissions together. Once application A and B are installed, they are then

allowed to communicate with each other so that it is possible for A to send B the contacts

list, then have B send the contacts list out to a remote site.

With Android, each application resides in its own Virtual Machine (VM) called a sand-

box. These sandboxes separate the application process from each other. This means each

process can be completely isolated but may still need to communicate. The Android Mid-

dleware is a middle layer which handles this communication by enforcing Mandatory Ac-

cess Control[9]. In general an application needs to have appropriate permission to access

different parts of the OS. Each application is made up of components and these compo-

nents can be public or private. Private means that only other components within the same

22

www.manaraa.com

Figure 2.2

Two App Collusion Attack

23

www.manaraa.com

application can access that component. Public meaning components of outside application

can access these components. While permissions need to be explicitly set, the components

access points (public or private) are not explicitly enforced. As such the OS defaults to

public so that applications will not be completely shut off from each other[11].

Application A, contact manager, has public components to send information to other

applications. Application B, weather, has public components to receive outside informa-

tion from other apps. With this channel now open, the two applications work together to

retrieve a user’s contact list and send it out to some outside source. This attack is hard to

track because individually each application have very limited access to the phone and did

not seem like a threat.

2.2.2 Privilege Escalation

The privilege escalation attack is similar to a collusion attack. This still relies on a

user installing malicious software based on limited permissions, yet this kind of attack is

designed to work independently and exploit other applications with too many permissions.

The goal of a privilege escalation attack is to mask what the malicious app is doing by

using other applications to do its work. As mentioned above, permission to access device

and OS components needs to be explicitly made. This is because of the way the compo-

nents are designed. A user made application can set how he or she wants components to

be accessed by making the components public or private. It is very easy to leave different

components of a developer’s application as public, especially if the developer is unsure at

24

www.manaraa.com

first what activities he or she wants the application to be capable of. A privilege escalation

attack exploits an open application that has access to some component of the system.

Figure 2.3

Privilege Escalation Attack

In this kind of attack, there are three applications installed on the device. Application

A is the malicious app, which will be doing the attack. Application B is a non-malicious

app that has components inside of it set as public, which are open to other applications.

Application C is a component of the OS that has restricted personal information, such as

the contact list. In the example application C has granted permission only to B while A

does not have it. This means that A cannot communicate directly with C. App B, on the

other hand, has open permissions to all of its components and so A can now communicate

with it. Because B has open permissions and has access to the information contained in C,

application A indirectly has the same information as well without needing the appropriate

permissions.

This kind of attack masks the software performing the attack by giving it limited per-

missions, yet still using the permissions of other applications to achieve its goal. In the

25

www.manaraa.com

above example app C is the contacts list of the device. App A is not given permission to

access the contacts list. This is limiting what the application actually can do, but it is able

to communicate with app B that has all the information of the contacts list. This bypasses

the need for A to actually have explicit permission to get the lists.

This attack and the collusion attack thrive on the misuse of permissions by applications

and on the fact that users may not fully understand or read the permissions when the appli-

cations are installed. The permissions are put in place by the OS to ensure some security

between the applications installed; yet, if not used properly can still allow for malware to

not just harm the device and information but hide what it is doing making it that much

harder to track down and prevent.

2.3 Current Security Attempts

As usage of smartphone devices grows, so do the attempts in exploitation of the devices.

The increase in malware in these systems has resulted in different attempts to protect the

devices from the new malware on the devices. These solutions are designed to protect

the end user of the device. There are different ways to protect the user. The user can

be educated as to understand the permissions of applications, and a device can have its

processes monitored from currently running malware. The work done in this area takes on

the role of protection after the discovery of vulnerabilities and does not focus on prevention.

This section outlines the security policies in development.

26

www.manaraa.com

2.3.1 Behavior Based Analysis and Security

Malicious applications run on the devices the same way as any other application. The

application needs to have permissions set to access components on the device, runs in its

own sandbox, and communicates through the Android Middleware like other applications.

It is once these applications are installed and running that the device becomes compro-

mised. Once the application is running analysis of its process can reveal the data being

collected by the application. Through the collection of permissions of the application and

specific data being collected a security team can determine if the application seems to be

performing un-documented procedures. This is done with the collection of data during

install time and during runtime.[15, 29, 2]

Banuri et al. researched the idea of a runtime policy enforcer. This framework built is

designed to analyze an application during runtime and enforce the permission constraints

placed on the application. It starts by having the researches develop policies they call a

harmful sequence of permissions. An example of this is an application has the Internet

Access permission and later, through the interaction of other apps, gains the Record Audio

permission.[2] This sequence of permissions is labeled as a harmful sequence and a policy

is developed to handle it. The framework takes these policies and stores them in a Policy

Repository for reference. When an application is installed, the framework stores a copy of

the permissions from the Manifest.xml file in a permission repository. As the application

runs, the permission usage is kept track of and is recorded along side the permissions in

the permission repository.

27

www.manaraa.com

With both repositories filled, the framework begins analysis of the application during

runtime. As already specified, the application will make requests based on its permissions

and this total is incremented in the permission repository. The framework monitors per-

mission usage to check against any of the harmful permission policies in place. Every time

a chain of permissions is established the framework must check this new chain against one

of its policies. The checking is done during runtime and when an application breaks any of

the framework’s policies the application can be isolated from the processes with an eval-

uation returned to the user. The ultimate goal is for the framework to enforce permission

constraints.

Other attempts at mobile security focus on standard malware detection techniques for

desktops.[29] These solutions attempt to handle the malicious behavior detection and clas-

sification that [2] could use to relieve the user made policy analysis. Shabtai et al. attempts

to solve the problem of classifying mobile malware with a framework they call Andro-

maly. The framework is designed to monitor application processes and attempt to classify

malicious behavior

Andromaly is a behavior-based detection framework. The framework uses machine-

learning techniques [29] to monitor process communication and decide what is malicious

and what is not. The researchers monitor the processes at runtime looking at resource

consumption such as battery usage, packets sent / received, CPU consumption, and number

of running processes. By monitoring these resources the framework can determine which

applications are safe and which are not.

28

www.manaraa.com

During runtime, Andromaly monitors each application’s sandbox for the resource con-

sumption. Over time it begins to build metrics for each application on the resource usage.

By using machine learning algorithms, the framework is able to determine the normal and

abnormal usage of certain resources. Andromaly will learn what is normal battery usage

and what is high battery usage. Each metric is sent to what they call a Processor, which

is the main analysis unit. This unit contains rule-based anomaly detection and makes a

classification of the particular application. Once the processor is done analyzing the app,

it is then sent to the Threat Weighting Unit, which gives the device an infection level. This

infection level is compared to the minimum and maximum thresholds for an infected sys-

tem. The framework keeps the infection level stored and as more application data comes

in, the additional data along with the infection level are sent back to the processor to refine

the infection level.

Andromaly is useful in helping to classify the applications as malware by removing a

large part of human analysis. The whole process takes time and running on a single device

can be resource heavy. The framework monitors individual devices with no automatic way

of corroborating the information. A similar behavior-based malware detection framework

is called Crowdroid developed by Burguera et al[7].

Crowdroid monitors the application behavior at runtime as well. It monitors the Linux

Kernel system calls and sends all the calls out to a central server. Various devices run the

framework locally. When the framework detects the Linux Kernel calls, it sends the data

out to a centralized server. This allows many different devices to be running at the same

29

www.manaraa.com

time to give the central server a large dataset. The framework is crowdsourcing the work

to get large amounts of data in a short amount of time[7].

The researchers [7] use clustering techniques to partition the raw data into different

call vectors. The call vector is a string of numbers that represents a count of each specific

kernel call being made. The central server parses out the data and compares it to the system

calls and is able to classify the application based on the system calls. By taking samples

of applications from many different devices, the framework is able to determine which

ones are making suspicious calls and are expressing suspicious behavior. From there the

central server can classify each application as benign or malware. By analyzing malware

on the device by monitoring the behavior during runtime, a collection of malware can be

established to allow for removal from the market. The more runtime analysis used, the

more malicious calls can be classified to judge newer applications being developed.

2.3.2 Policy Based Security

Malware detection is useful when attempting to find problems with newer applications

as they appear on the market. By knowing how these applications attack the system, secu-

rity teams are able to pinpoint the exploits in other applications. The heart of the security

teams for Apple’s iOS market, and Google’s Android market rely on these techniques in

finding existing malware to remove from the market. These pieces of malware keep show-

ing up on the markets because of how easy it is for users to install them.

A problem with mobile device security is based on the users to protect their devices.

The end user of the device does not have the education or experience to know if an ap-

30

www.manaraa.com

plication seems suspicious. With the market it is easy for a user to access the app he or

she wants and download it to the device. With Android’s policy of having the permissions

shown to the user before installation, and having the user agree to them, the assumption is

made that the user understands what these permissions are and how the applications will

use them. Most users can see no problem in these open permissions and will install that

application anyway[5].

While the inclusion of a strict permission policy builds in security for the device, a user

who grants an app access to these permissions has agreed to any exploit the application may

be using. One way to fix this problem is to educate users to the dangers of applications on

the devices. Researchers have developed policies with guidelines built for users to follow

to ensure more secure mobile devices.

The National Institute of Standards and Technology (NIST) published a document in

2008 called Guidelines on Cell Phone and PDA Security[19]. The goal of the document is

to outline a set of guidelines that users of mobile devices can use to greatly increase their

security. NIST determined that people tend to violate these guidelines because they do not

think about them on a big scale. The give a list of User-Oriented Measures:

• Maintain Physical Control

• Enable User Authentication

• Backup Data

• Reduce Data Exposure

• Shun Questionable Actions

• Curb Wireless Interfaces

• Deactivate Compromised Devices

31

www.manaraa.com

• Minimize Functionality

• Add Prevention and Detection Software

As with any computer, the security of the device is gone as soon as an attacker has

physical access to the device. Maintaining physical control at all times is important for

any device. Loss of the device or theft not only makes the user lose the money invested

in the device, but now all of the personal data of the device is in someone else’s hands. In

the event of lending the device to another user, the owner should never leave the device

unattended because then the owner will not know what could have been placed on the

device[19].

Enabling user authentication allows for the device to be locked while not in use. When

a device is locked, it ensures that only the person who has the appropriate credentials, such

as a password, can unlock the device. In addition to being able to lock the device, user

authentication is crucial for installation of applications[19]. With Android, the user must

agree to the permissions before installation. But if the device has been Rooted at any point,

other applications can do installations without the user’s consent.

Backup all data on the device. Using the device as the only repository for any of the

user’s data is unsafe. The device can be lost, stolen, or damaged. If any of these events

take place then the user’s data will be lost and not recoverable[19].

Users can reduce data exposure by avoiding using the device as a storage place for

sensitive information such as personal contact information or financial records. While

authentication mechanisms can help protect the device from being accessed, as soon as the

32

www.manaraa.com

authentication breaks all the information is exposed to the malicious user. If any sensitive

information does exist on the device it should be encrypted[19].

Users should shun questionable actions by only allowing processes to occur that the

user is expecting. The user should not respond to unknown text messages nor click any

links sent to him or her. This could be a way of getting the user to download a malicious

app remotely. The user should also be aware of network connections and not allow any

network or Bluetooth connections to happen that the user was not expecting[19].

Users should curb wireless interfaces by disabling all network connections when not

in use. In the case of a smartphone, all wifi, Bluetooth, and mobile network access should

be turned off when not specifically using them. Staying offline reduces the chances of

malicious connections from reaching the device[19].

Users should deactivate all compromised devices as soon as they have been compro-

mised. This is usually done if the device is lost. By deactivating the lost device, anyone

who finds it will be unable to use the device for personal gain. The device can also be

compromised while still in the user’s possession. It should still be deactivated immediately

until the malicious software can be removed. While compromised any communication the

device has can cause harm[19].

Users should minimize functionality by limiting the features of the device. The more

features and capabilities given to the device, the greater the risk in exploitation. Similarly

to deactivating all network connections, the device should not be using any capabilities

unless specifically being used at the time. More capabilities means more components to

attack[19].

33

www.manaraa.com

All devices should have prevention and detection software. Device encryption, an-

tivirus software, firewalls, etc. all can be used to limit the chance of getting malware

installed on the device to keep it safe[19].

The document is intended to give a list of rules for users to follow for protecting their

mobile devices. NIST then goes on to encourage companies to use the rules to build

company-wide policies for employees to use. Alan Goode performed a study in which

he would ask companies questions about their mobile device policies. He discovered that

65% of companies allow employee-owned devices to be used for business purposes as well

as personal. In addition, 46% of respondents do not have a document outlining security

policy for mobile devices[16].

The idea of using one’s own mobile device to conduct business remotely is a growing

one. With the increase in usage of these devices for business use companies need to ed-

ucate their employees to the dangers around exploitation of the devices. Goode proposes

that companies need to deploy policies their employees can follow to help reduce the vul-

nerability of their devices. He suggests forming policies around encryption, backup, and

authentication mechanisms[16].

The goal of policy driven security is to prevent the attacks from happening by giving the

user the tools and education he or she needs. Since most exploits come from user misuse

of the device, educating the users, can help prevent the malware from being installed on

the device before anything else can happen.

34

www.manaraa.com

2.3.3 Permission Based Security

The Android OS relies on a strict permission policy to secure their applications. The

whole concept revolves around the application needing to request explicit permission in

order to access components of the device.[1] If an application needs Internet connection, it

needs permission to the Network Connections privilege. Yet it is the permissions that can

be exploited to gain access to device components without privilege access[9, 30].

Bugiel et al. developed POSTER, a framework designed to monitor the communication

of applications against their permissions. This framework works on runtime like most of

the behavior-based security solutions. While POSTER is monitoring the communications

of the applications, it is doing so in context of the permissions of the application.

The framework monitors the Inter-Process Communication (IPC) and intercepts calls to

the reference monitor. The request is analyzed and compiled into a system security policy.

This policy contains the permissions needed for the communication to happen. The IPC is

continuously monitored and the information sent back is also recorded in a system security

policy. The system policies are checked against the manifest.xml file of the application

to check permissions. The permissions are checked to see if they will grant the access

the application is looking for. Upon determination that the application is going beyond its

permissions, the communication can be terminated and the application removed[24].

The goal of the framework is to prevent privilege escalation attacks by monitoring the

permissions of an application. Developers have a tendency to leave permissions open as

well as add permissions as they develop. As a developer programs his or her application for

Android, he or she has a tendency to make calls to APIs and instantiating new permissions

35

www.manaraa.com

each time. This creates a duplication of permissions in apps.[32] An application can have a

permission secured and not left open; however, if accidently duplicated, the duplicate will

not have the same restrictions placed on it. Table 2.2 displays the summary of applications

with duplicate permissions. The table was taken from [32].

Vidas et al. developed a plugin for the Eclipse IDE to help check the permissions

of developers during development. As the developer is coding the applications, the plugin

will monitor the usage of the permissions. Any time the plugin finds a duplicate permission

being called it notifies the developer to the duplicates and allows the developer to make the

appropriate change[32].

The problem with extraneous permissions is that it can leave holes open in the appli-

cation. If the application has a duplicate Network Access permission, then the OS will

default to the one that has fewer restrictions on it. This permission may not be the one

used, but it is still opened. The opened permission can allow for a malicious user to exploit

the vulnerability with another application. This is how the device becomes vulnerable to

privilege escalation attacks.

The permissions set by the Android OS creates a level of security in the applications.

The permissions must be explicitly set to allow an application to communicate outside of its

own sandbox. The more permissions an application has set, the more open the application

is. Misuse of the permissions allows for the software to become vulnerable to outside

attacks. The goal of permission security is to reinforce the idea of application security by

using only the permissions the application needs.

36

www.manaraa.com

Table 2.2

Applications with Duplicate Permissions by Market Category

Market Category Total Apps With Duplicates

Arcade and Action 1344 17
Books and Reference 1452 24

Brain and Puzzle 1352 14
Business 1092 38

Cards and Casino 842 85
Casual 966 4
Comics 836 11

Communication 1311 77
Education 1305 21

Entertainment 1522 40
Finance 1354 44

Health and Fitness 1258 36
Libraries and Demo 1156 21

Lifestyle 1489 48
Live Wallpaper 537 14

Media and Video 1360 49
Medical 527 2

Music and Video 1124 89
News and Magazine 1419 63

Personalization 1342 54
Photography 1165 283
Productivity 1319 54

Racing 216 76
Shopping 1155 46

Social 1296 41
Sports 1433 23

Sports Games 365 71
Tools 690 27

Transportation 454 8
Travel and Local 1473 35

Weather 342 4
Widgets 1395 64

37

www.manaraa.com

2.4 Software Development Life Cycle

The concept of the Software Development Life Cycle (SDLC) was developed to stream-

line the designing and building of large software packages deployed by organizations. As

the use of computers for business grew, so did the complexity of the software running the

businesses. With less complex systems, it is possible for the developers to begin imple-

mentation, guiding the evolution of the system design. When the systems become more

complex it becomes harder to build without a solid design[13, 25, 31, 28, 18].

With the SDLC organizations break the software development into blocks or phases.

These phases are structured guidelines that are designed to make software development

easier and more cost efficient. Each phase is a piece of the overall system being built and

is taken one at a time. The ultimate goal is that if each phase is completed properly then

there should be little to no rebuilding of the system in the end.

2.4.1 Traditional SDLC

The software life cycle is used to model the phases that software should go through dur-

ing development. Having a detailed list of goals in mind before the actually programming

begins makes it easier to know what functionality to build into the system. Each phase

is designed to build a particular part of the overall system and must be completed before

moving on to the next phase. Figure 2.4, taken from [25], shows the general life cycle.

Ragunath et. al [25] show a general model for a software life cycle as shown in figure

2.4. This model shows the general flow the developers will follow when building a new

software system. Each phase works on sequentially until completion. The first step is to

38

www.manaraa.com

Figure 2.4

General Life Cycle

work within the first phase of the life cycle and nothing else for the system is worked on

until this phase is completed. Once the first phase is complete, the developers move on to

the second phase. The above model is separated into four phases: Requirements, Design,

Implementation, and Testing.

The Requirements phase is where the developers of the system meet with the client re-

questing the system being built and decide what functionality the system requires. During

this time, the functionality is determined ahead of time and not as needed during implan-

tation.

Next is Design. Once the functionality is determined, the developers move to a phase

where the software is designed before any code is written. It is this phase where the func-

tionality is translated to components of the system and the messages the components will

use to communicate. This phase is used so that the high level design is used to guide the

implantation, not the other way.

Once design is complete, the developers move to Implementation. This phase is when

the software is actually programmed. All of the decisions made from the design are trans-

lated to code and the system is built.

39

www.manaraa.com

The last phase is Testing. Once the system is completely built, the software moves into

a testing phase where any errors and bugs are discovered and fixed. This phase polishes

the product before final delivery.

At each one of these phases, the developers are focused only on the phase they are

currently working. When in the Requirements phase, no time should be spent designing

the system. The ultimate goal of this process is to use each of the phases to guide the

completion of the next phases. If the developers are successful during the requirements

phase in gathering all requirements, these requirements can then be used to guide the design

of the overall system. With the requirements finalized, the developers have no reason to

constantly get a requirement and alter the design as newer requirements arrive. At each

new phase, all previous phases are completed and should have no need to be revisited.

When the developers are finished designing the system, then all of the requirements will

be accounted for in the design and implementation would have no need build off of the

requirements. This process continues until the system is completed.

The general model has been used as the basis of developing other software life cycle

models. The process is simple as it clearly defines a phase and the progression through

the phases. The general model is usually represented a second way known as the Waterfall

Model[25].

The concept of the Waterfall model, shown in Figure 2.5 taken from [25], is to show

the different phases of the life cycle and at each step the model ”steps down” falling like

a waterfall. The idea behind the Waterfall is the same idea that the general model was

displaying. During the software development process the developers go through different

40

www.manaraa.com

Figure 2.5

Waterfall Lifecycle Model

phases. Once each phase is completed, the developers step into the next phase of develop-

ment. While the phases can changed based on a particular client’s needs, the idea of how

to use the phases in the Waterfall remains the same.

Although considered a flawed model [25], the Waterfall model is just an extension of

the general approach to SDLC and is simple to understand. The simplicity of the model is

why it is used to teach the concept of SDLCs. Once the developers understand this concept

changes can be made to the model to fit their particular needs. Even though flawed, this

general approach is useful in guiding the way developers go about building a system and

extensions have been made to help improve on this model[28].

The flaw with the Waterfall and the general model of software development is that it

does not allow for any backtracking through the phases if requirements or design decisions

41

www.manaraa.com

change. Some adaptations have been made to account for this with the Iterative Feedback

Waterfall model. This model does allow for the developers in a phase to step back to the

previous phase. This still only allows for one step at a time and must be completed before

stepping back again, or moving forward. The rigid flow of these general models makes

changes and adaptations harder to implement and has led to the design of more flexible

models.

2.4.2 Flexible SDLC

It is common for decisions to change during the development cycle. If during devel-

opment the customer decides to add some additional requirements, then the development

team must be able to adapt the design without starting over. The traditional approach to

SDLC had the developers complete a phase and move onto the next phase with no easy

way to go back. That approach works if the system does not need to be changed in the

middle of any particular phase. Flexible models of SDLC do not require an entire phase

to be 100% completed before moving onto the next step. They allow for the developers to

reevaluate the process in each phase and determine ahead of time if changes will need to

be made.

The look-ahead component of these models is what allows them to be flexible to

changes in the system during development. The Spiral Model developed in 1986 by

Boehm[28] gives developers a guideline to developing the system with reevaluation at

each phase.

42

www.manaraa.com

Figure 2.6

Spiral Model

43

www.manaraa.com

The Spiral model was designed to allow for greater risk assessment during develop-

ment. Like the traditional model the Spiral model still breaks development into phases,

but it is not concerned with completion of a phase before moving on with no real plan for

going backwards. The Spiral model allows for the developers to retrieve feedback while in

a phase to allow for adjustments to be made during the lifecycle.

In figure 2.6 taken from [28], the starting point is requirements planning like the tra-

ditional model. The requirements are gathered then are submitted to a risk analysis sub-

phase. The risk analysis is designed to look at the requirements and begin prototyping a

design to match them. This prototype begins the design phase while still gathering all of

the requirements. The prototype is then used to elicit feedback from the customer to insure

that the integrity of the requirements is being maintained in the design. If any changes need

to be made, the process loops back around again gradually moving into the other phases of

the lifecycle.

With the Spiral model, the ability to combine multiple phases (meaning what the gen-

eral model would call phases) together gives the developers a way to look ahead and de-

termine if changes need to be made before they happen. At each stage the developers

prototype the current incarnation of the system that is used to gain feedback from the cus-

tomer. This prototyping gives greater flexibility in the overall designing and building of

a system. This concept can be used to modify existing models by adding in a circular

transition between phases during development.

The Rapid Application Development (RAD) model is a methodology designed by

James Martin in 1991. [28] As seen in figure 2.7, the RAD model takes the general model

44

www.manaraa.com

Figure 2.7

Rapid Application Development

from traditional development and adds a cyclical transition between phases that allows for

incremental development. In RAD the requirements are defined, a design is made, the de-

sign is developed and created, and the system is tested. The results of the test are used to

judge the system and, going back to requirements definition, makes adjustments. The key

for this model is that each phase is not iterated through only once. Small prototypes are

made and used to redesign parts of the system. With each pass through the cycle, more

components of the system are added. By prototyping each component, the developers are

able to know that these components work when it comes to adding more to it.

The goal of having SDLC models is to reduce the overall cost by having all parts of the

system designed before implementation of the system. By not having to backtrack through

development, the developers are able to save time making the system. The key to having

a flexible model is the ability to cycle back to other phases without losing work. These

flexible models make great use of prototyping to gain feedback. The prototypes are built

and given back to the customer for review. Once the prototype is approved it can then be

45

www.manaraa.com

used to build upon. The constant building on earlier prototypes is how models like the

Spiral Model are able to keep development time low while still allowing the flexibility of

change during development.

2.4.3 Summary of Reviewed Works

Many attempts at Android (and all smartphone OSs in general) security relies on a tool

or process to protect the device after applications have been installed. Malicious software is

written to exploit vulnerabilities in poorly design applications. Current research in Android

security deal with tools designed to protect from known vulnerabilities by isolating or

completely removing vulnerable applications from the device.

Software development life cycles exist to assist in the design and building of software

applications. These models and methodologies result in less time spent redesigning code

during and after testing. With current methods of security focusing on protecting devices

after installation, research in preventing poor design from the beginning is sparse. The

proposed model utilizes SDLC methodologies to prevent poor design and open permissions

from final Android applications as detailed in chapter 3.

46

www.manaraa.com

CHAPTER 3

SECURE ANDROID DEVELOPMENT MODEL

The Secure Android Development Model is designed to give the steps and tools neces-

sary for developers to implicitly build security into their applications. This chapter outlines

the procedures leading to the development of the model as well as the model itself. The

chapter is organized as follows into three sections. 3.1 Inconsistent Permission Usage de-

tails how permissions work and why they can offer security holes. 3.2 Permissions Defin-

ing explains how developers can get a list of permissions and organize them into priorities.

3.3 Secure Android Development Model shows the model itself with a detailed explanation

of each step.

3.1 Inconsistent Permission Usage

When a developer makes an application, part of the design involves knowing what ac-

tions the application will be making that require permission to access. The application

needs to be explicitly permitted to access the components within the system. The same

security principle applies to a user-made app trying to access other user-made apps. Each

application is made up of smaller components. The components are smaller pieces of soft-

ware that interact with each other for functionality (object-oriented style of development).

For an application to access components from another application there needs to exist per-

47

www.manaraa.com

missions for this interaction. The developer of the application needs to decide whether

the components need to be public or private. A public component is open to other appli-

cations while a private component is only available to other components within the same

application.

Public components are reachable by outside applications and will require permission to

access. The developer designs a user-made permission that other applications must know

about and request in order to communicate with it. In the event that a developer assigns

a component as public without specifying a permission, the OS allows any application to

access the component. A developer can often overlook this feature in the quick develop-

ment of the application[11]. If a component is not made public or private, the OS can

decide during compilation what the component should be. This can lead to components

that should be private being public without any access permissions assigned to them.

A developer can also request too many permissions from the OS during development

if unsure what the end result of the application will be. By opening up many different

permissions, the application is exposing itself to more access points. For example, an

application can be given access to the Bluetooth capability of the device. As soon as a

malicious developer discovers an exploit in the Bluetooth application native to the device,

any application that connects to it is exposed. This is unavoidable if the application relies

on the Bluetooth of the device. It becomes a problem if an application is developed with

this permission given and not being used. Developers can leave permissions open even if

there is no appropriate API calls being made[32].

48

www.manaraa.com

Development can be a quick process where decisions are made spontaneously. When

the decisions are made spontaneously there is no revision made to ensure that every com-

ponent left open is being used by teh system. Any open connection leaves the application

vulnerable to other applications. The best practice is to have the minimum permissions

needed to run the application being called.

3.2 Permissions Defining

The first process to software development is to define the requirements. The require-

ments of the system are the actions that the software must perform and capabilities the

software must have. Accessing an online database as well has having a simple GUI are

both examples of requirements. With Android applications, the actions performed by the

software still need to access permissions from the system. The first step in developing an

android application is defining what actions the software will take and what permissions

need to be requested for these actions.

During the development process, it is easy to add more permissions to the Manifest.xml

file while making API calls in the source code. As mentioned earlier developing in this

style can lead to permissions being opened and left opened after the associated API call is

no longer used. It also leads to duplicate permissions being opened without firmly control-

ling both. The developer only maintains control of one of the duplicates at a time[32].

The Android API defines two classifications of permissions for the manifest: Mani-

fest.permission and Manifest.permission group. The idea of having a permission-group is

to wrap similar permissions together into one. An example of this is the permission-group

49

www.manaraa.com

BLUETOOTH NETWORK. This permission is in reality a collection of other permis-

sions. In this example BLUETOOTH NETWORK contains the following permissions:

BLUETOOTH, BLUETOOTH ADMIN, and BLUETOOTH PRIVILEGED. The use of

the group is to ease application building for the developer. The developer has to only make

one permission call rather than three in his or her manifest file. The disadvantage to using

groups is that all permissions in the associated group are open, even if they are not being

used. The first way to prevent overuse of permissions is to not utilize permission-groups.

In addition to adding system permissions as needed, the developer can choose to not

specify any permissions associated with the application’s components. Any component left

open as public must have user made permissions associated with it or else any application

can access the component. The developer needs to plan ahead of time what actions the

application will take when working with other applications and set its own permissions

before development starts.

To determine what permissions the application needs the developer must decide the

requirements of the system. From the requirements the developer prioritizes them based

on preference[20]. When determining preference the developer asks himself or herself,

”What requirements are necessary for the application to function, and what requirements

are nice to have but not crucial?” The requirements can then be broken down into the

permissions needed for it to run.

The requirement in figure 3.1 is the application needs to use Bluetooth capabilities.

From here we find three permissions associated with Bluetooth. BLUETOOTH is used to

allow applications to connect to and communicate with paired devices. BLUETOOTH AD-

50

www.manaraa.com

Figure 3.1

Breakdown of Bluetooth Access Requirement

MIN allows applications to discover and pair with Bluetooth devices. BLUETOOTH PRIV-

ILEGED is used to allow applications to pair with devices without the user interacting with

them. All of these permissions are used for a Bluetooth connection, but not all of them are

needed. The application can function with just the BLUETOOTH privilege and the user

can manually discover and pair devices outside of the application. Because the user can use

the built-in functionality to pair with other Bluetooth devices, the only one that is needed

for the app to work is the BLUETOOTH permission. The others are nice to have but not

crucial.

As mentioned earlier, there exists a permission-group that encapsulates all three of

these Bluetooth permissions. A developer can call the group permission and not have to call

three separate individual ones. Using the permission-group can be useful if the developer

needs to use all three of the Bluetooth permissions. Unless it all three of these permissions

are needed, using the permission-group for Bluetooth will result in open permissions not

being utilized by the application.

51

www.manaraa.com

Figure 3.2

Breakdown of More General Requirement

A requirement can also be a more generalized task without specific permissions tied

to it. Figure 3.2 shows the requirement of the device needing network access to remote

sources. This is broken down into three other tasks specifically as needing Internet access,

wifi information, or Bluetooth connectivity. Each requirement is further broken down into

sub components and on until a list of permissions is established. The goal of this process

is to establish the permissions a developer will need for the application.

3.3 Secure Android Development Model

With the problems permissions can present to a developer, having a process to follow

to ensure minimum permission usage (both system permission request, and user made

permission) will result in cleaner coding with fewer outside openings. The more activities

a single application performs, the more vectors of attack are open to it from privilege

escalation and collusion attacks. The Secure Android Development Model (SADM) is a

52

www.manaraa.com

development lifecycle model that focuses on creating an application that achieves all the

intended functionality with minimal permissions.

The SADM consists of 4 main development phases and a delivery phase. The phases

all contain steps for developing the permissions needed for the application to work. Each

phase with the exception of the Build Application phase all contain sub-phases to further

isolate the activity into smaller but still important steps. The model follows a standard

Spiral Model of software development. This model focuses mostly on generating the Man-

ifest.xml file for the permission setting. Figure 3.3 illustrates the steps of SADM.

3.3.1 Permission Gathering

The Permission Gathering phase is the first phase in the process. This phase is similar

to a requirements gathering phase as the goal is to determine before implementation what

kinds of permissions are going to be needed. The phase is broken into three sub-phases:

System Requirements, Component Requirements, and Permission Listing.

In the System Requirements sub-phase the developer is attempting to determine all of

the permissions the application will need to request from the operating system. The de-

veloper plans for every interaction with the system the application will be wanting and

listing these as requirements for the system. Once the requirements are determined the

developer follows the process of decomposing the individual requirements into the per-

missions needed. The decomposition will break each requirement into sub-requirements,

which helps in further refining the requirements, and will yield the permissions. Figure 3.4

illustrates the process of going from a requirement to a set of permissions.

53

www.manaraa.com

Figure 3.3

Secure Android Development Model

54

www.manaraa.com

Figure 3.4

Decomposition of Requirements to Permissions

55

www.manaraa.com

The Component Requirements sub-phase follows the same idea as the previous sub-

phase except that it is for any actions the applications will make regarding receiving and

sending information to other applications. The components of each application are what

run it. For each application, if there are components that need to send data to other appli-

cations, then the component needs to be made public and a user made permission needs to

be implemented. If the application needs to receive data from other application it needs to

know what the user defined permission is for the app and request it. The end result will

be a list of components needing to be public with any of the user defined permissions the

application will require for others as well as any extra permissions the application needs

from other applications.

The last sub-phase is the determining of permissions. Once all of the requirements have

been determined and the decomposition leading to the list of permissions has been made,

the developer then organizes the list of permissions. This final step is to ensure that any

permission that meets the needs of the requirements is included to be prioritized.

3.3.2 Manifest Design

After the requirements for permissions are established, the developer then moves to the

Manifest Design phase. Before any implementation is started, the Manifest.xml needs to

be constructed to enforce the permissions determined before development. This enforces

the idea of not adding any new permissions during development and sticks to maintaining

what was determined during the initial design. This phase is broken into two sub-phases:

Prioritize Permissions and Create Manifest.

56

www.manaraa.com

By the Prioritize Permissions sub-phase the developer has taken his or her initial re-

quirements and extracted a list of permissions. The list of permissions is still unrefined and

needs to be prioritized. The prioritization is to establish what permissions are necessary

to function and which permissions are simply to add more functionality to the application.

The developer progresses through each of the requirements, looks at every permission, and

determines the ones vital for the application to function and which ones make using the

application easier. The goal is to get a minimal list of permissions set.

Table 3.1

Statements About a Permission to Determine Its Priority

Statement Template Meaning of Statement

need X Permission X must be used to satisfy requirement.
X would be nice Permission X makes functionality easier.
Y needs X Permission Y needs Permission X to function.
never X Permission X never needs to be used.
Y and X Functionality requires both permissions Y and X.

The Create Manifest sub-phase is started once the permissions are prioritized. The

developer takes the determined permissions and creates the Manifest.xml file for the ap-

plication before development. The file is created and all of the permissions are put into it

ahead of time. With the permissions being preset into the Manifest.xml file, the developer

can use it to maintain integrity on the API calls for the permissions during development.

57

www.manaraa.com

3.3.3 Application Development

Once the Manifest.xml file is created and all of the permissions determined, the user

then can start programming the actual application. This phase is only concerned with the

coding. The pre-generated Manifest.xml will be used to guide the development of the

application by giving the developer the idea of what API calls will need to be made for

the various permissions. No API call should be made that does not have a corresponding

permission set in the file. Likewise, there should not exist a permission left open that does

not also have a corresponding API call.

3.3.4 Test Permissions

After the application is built, it should be tested for conforming to the integrity of the

model. Testing is needed before any application is released to the market. For this model,

testing refers to the testing of the permissions against the original Manifest.xml. This phase

will perform the checking with the goal of checking to see if any new permissions were

added or changed during development. The phase is divided into two sub-phases: Check

API Usage and Check New Manifest Against Old.

The Check API Usage sub-phase is designed to find inconsistencies between the API

calls of the software with the Manifest.xml file. During development, decisions can be

changed with respect to functionality and API calls made by the application. These changes

result in permissions being set in the Manifest.xml but never used. This violates the mini-

mum permission constraint the model enforces. This sub-phase is a manual process forcing

the developer to check for an appropriate permission set for every API call.

58

www.manaraa.com

The next sub-phase, Check New Manifest Against Old, is designed to check for in-

tegrity between the premade Manifest.xml and the resulting one. Similarly to changing

decisions with API calls, permissions can be added or removed as design changes happen

during development. This sub-phase checks the permissions listed in the new Manifest.xml

file with the permissions set in the premade one.

The next step is to determine what process to take if there is inconsistency between

the predetermined permissions and the ones set at the end. In the event that either of the

two sub-phases result in inconsistent permissions, the priorities and requirements need to

be reevaluated. The process loops back to the beginning Permission Gathering phase and

repeats itself. This loop continues until a final permission set is equivalent to the one made

before development.

3.3.5 Application Delivery

After the process has been completed (even if it took more than one iteration), the

final step is to deliver the application. The result from following the previous phases is

an application that contains a minimal number of permissions both set and requested in

order for the application to function properly. While more permissions could make use

of the application easier at times, by keeping the interaction of the app to a minimum

the developer has reduced the risk of having his or her application compromised by other

malicious software.

59

www.manaraa.com

CHAPTER 4

EXPERIMENTAL DESIGN

In Chapter 3 a methodology was outlined for secure software development on the An-

droid system. This chapter describes the experimental design and reports on the results of

experimentation by the participants. The participants were given a set of requirements for

an Android application to build. The participants used the SADM methodology to build

the application and completed a survey upon completion. The results of the survey and

the final permission list are used in conjunction to analyze the effectiveness of using the

methodology for development. This chapter describes this experiment and presents the

results.

4.1 Testing Plan

The hypothesis proposed in this dissertation is that using the proposed SADM method-

ology results in minimal usage of permissions for an application. As stated earlier, this

dissertation defines minimal as the fewest number of permissions used to satisfy the re-

quirements. To test this, the methodology needs to be used by software developers and

have an application built. This section presents the application built by participants as part

of the experiment testing the methodology.

60

www.manaraa.com

4.1.1 Model Verification and Test Case Design

Verification of the model was performed by the researcher building an application based

on existing apps. The application was built to allow for two devices to connect to each other

allowing for message transmission and file sharing. One user needed to pick a file from his

or her device and send it to a connect device. In addition to file sharing, the two devices will

be able to send short text based messages to one another. Prior to building the application,

the researcher began a survey of applications with similar capabilities from the app market.

A total of 20 different applications were analyzed. These applications were a combination

of file transferring and messaging applications and the distribution is showing in Table 4.1.

Table 4.1

Pre-Test Analysis Application Type

Application type Number of Applications

File Transfer only 5
Messaging only 5

Messaging and File Transfer 10

The permissions of each application were checked against the usability of the appli-

cation itself. If a permission was set by the application then the user should be able

to utilize it. For example, a file transfer application the application needs to set the an-

droid.permission.READ EXTERNAL STORAGE and the android.permission.WRITE E-

XTERNAL STORAGE permissions. These permissions can be seen by the user in the

form of finding a file to transfer and downloading a file from another user respectively.

61

www.manaraa.com

Any permission set by the application that did not have some usable functionality by the

user was recorded. Table 4.2 shows a list of unused permissions and how many applications

had these permissions set.

Table 4.2

Permission Usage

Permission File Transfer Only Messaging Only Combination

Unused Permissions
ACCOUNTS 4 5 9

MICROPHONE 3 2 10
PERSONAL INFO 5 5 10

SOCIAL INFO 3 5 7
Used Permissions

DISPLAY 4 5 10
NETWORK 5 5 10

SCREENLOCK 5 4 10
STORAGE 5 5 10

Using this information, a test application was developed that utilized the common func-

tions of these applications. The permissions used for the application were the same per-

missions presented in table 4.2. The application built by the researcher resulted in many

different permissions opened with no functionality utilizing them. The permissions set

were deconstructed from the group permissions to individual ones. Through three differ-

ent rounds of requirements mapping, the specific requirements were determined and a final

list of permissions was generated.

62

www.manaraa.com

Table 4.3 lists the starting permissions used for initial test application. From this, a set

of requirements was built and a list of permissions was determined for the requirements.

Table 4.3 shows the requirements and the related permissions for them.

This application verified the steps in the SADM process. The researcher built an appli-

cation that achieved all of the functional requirements with the fewest permissions possible.

It was determined that if any of the permissions were removed, then the application would

not meet all of the requirements.

Validation of the model began after the initial tests with a group of volunteers. The

application built by the researcher is used as a control to compare with the volunteers’ final

product. The case study relied on each participant building the same application built by

the researcher during verification.

4.1.2 Test Environment

Validation of the model was performed by a group of participants recreating the ap-

plication built during verification. Participants with backgrounds in software development

were chosen and given the application requirements for developing. The validation group

consisted of a mixture of students and industry developers. Each participant was given

the requirements for the verified application. The participants used the SADM to build

the same application as the researcher and had their final permission list compared to that

predetermined before testing began.

63

www.manaraa.com

Table 4.3

Requirements and Associated Permissions

Functional
Requirement Permission Associated with Re-

quirement
Notes

Encrypt File/Message None No permission used to
encrypt files and mes-
sages before sending to
device.

Decrypt File/Message None No permission used to
decrypt files and mes-
sages before sending to
device.

Connect to other
device None Two devices need to be

able to communicate with
each other.

Connect to the
internet INTERNET Allows for sockets to be

opened between devices
over the internet.

Only transfer over wifi
ACCESS WIFI STATE Needs to access the wifi

hardware on the device
for internet usage.

CHANGE WIFI STATE Connects to wifi hard-
ware of device.

64

www.manaraa.com

Table 4.3

(continued)

Functional
Requirement Permission Associated with Re-

quirement
Notes

Send Messages to
devices None No special permission is

needed to send text over
network sockets.

Send Files to devices
READ EXTERNAL STORAGE Read files from a device

in order to send over net-
work.

WRITE EXTERNAL STORAGE Files received over net-
work needs to be written
to device.

4.1.2.1 Test Group

The SADM is a software development model. Since it is a software development model

the targets for participation are those familiar with software development on some level.

A mix of students and industry workers were used for this test. Four of the participants

were Computer Science and Software Engineering students at Mississippi State University

while seven were software developers working in industry in various areas in and around

Mississippi.

As shown in Table 4.4, all of the participants have experience with programming appli-

cations. Only one reported his experience as being medium with a majority of participants

rating themselves as high. When asked about their experience with Android application

65

www.manaraa.com

Ta
bl

e
4.

4

Pa
rt

ic
ip

an
tD

em
og

ra
ph

ic

Su
bj

ec
t

G
en

de
r

Pr
og

ra
m

m
in

g
E

xp
er

ie
nc

e*
A

nd
ro

id
D

ev
el

op
m

en
tE

xp
er

ie
nc

e*
U

se
Sm

ar
tp

ho
ne

E
ve

ry
da

y
1

M
H

ig
h

N
on

e
Y

es
2

M
H

ig
h

L
ow

Y
es

3
M

M
ed

iu
m

N
on

e
Y

es
4

M
H

ig
h

L
ow

N
o

5
M

H
ig

h
L

ow
Y

es
6

F
H

ig
h

M
ed

iu
m

Y
es

7
M

H
ig

h
N

on
e

Y
es

8
F

H
ig

h
L

ow
Y

es
9

M
E

xp
er

t
H

ig
h

Y
es

10
M

E
xp

er
t

M
ed

iu
m

Y
es

11
M

H
ig

h
L

ow
Y

es
*

N
on

e(
0

ye
ar

s)
,L

ow
(1

-2
ye

ar
s)

,M
ed

iu
m

(2
-3

ye
ar

s)
,H

ig
h(

3-
4

ye
ar

s)
,E

xp
er

t(
4+

ye
ar

s)

66

www.manaraa.com

development, the participants have not had as much experience with that platform. Most

participants had low to no experience developing applications on Android, yet one reported

having high experience. While the participants are experienced programmers, there was

more variety in each subject’s personal experience with development on the Android plat-

form.

With the exception for one individual, all of the participants reported using a smart-

phone in their everyday life. As explained in Chapter 2 this is a result of the ubiquity of

these devices in people’s lives. Development of an application for a smartphone is different

than development on a standard computer system. The type of smartphone each participant

used was deemed irrelevant as the main concern is understanding on a general level of how

someone interacts with the device.

4.1.2.2 User Case Study

Using the SADM requires that a developer build an application for the Android envi-

ronment. By using this methodology, a developer is able to build any application he or

she wants by providing the ability to determine which permissions should be used before

development. This allows for any application to be built using this methodology. To con-

trol the test groups, an application was built by the author before testing. This application

was used to determine a set of requirements given to each participant. The resulting appli-

cation’s Manifest.xml was used to determine the appropriate permissions the participants

should use. This same application was given to each participant to keep a control over

permissions expected compared to permissions delivered.

67

www.manaraa.com

Each participant was provided with a detailed explanation of the SADM. The re-

searcher provided the visual model and an explanation of the methodology. The require-

ments provided the vision of the end application and the SADM provided the structure on

how to build it. The participants followed the researcher’s model to develop the applica-

tion. Once the model and requirements were given to the participants and development

began, the researcher had no more interaction with the participants until the task was com-

pleted. Each participant was then given a survey and briefly interviewed by the researcher.

The survey and the participant’s resulting permission list was returned to the researcher for

analysis. The survey answers provided the researcher with how the participants used the

methodology to generate their final permission list. The final permission list was compared

to the expected list generated by researcher. Section 4.2 explains how the participants used

this model and how their final list compared to the one the researcher expected.

4.2 Experiment Results

After the participants completed their tasks, a survey was filled out and returned to the

researcher along with the final list of permissions generated for the application. By using

the SADM methodology, each participant would generate a list of permissions. This list is

then compared to the list generated by the researcher. The goal is to have the participants

achieve the same permission list as expected by the researcher. Having the end permission

list by itself is not enough. This list has to have been generator by using the methodology.

The surveys allow for each participant to respond to how he or she used the methodology

to build the application.

68

www.manaraa.com

By looking at the final permission list and the information provided by the post-test

surveys, the researcher determined how the participants used the model to build the appli-

cation. The surveys also provide information for how useful the methodology is for appli-

cation building in general. The SADM is a development model and can only be effective

if it is useful. In addition to testing the model usage for generating the final permissions, it

is also of interest to the researcher to inquire into the overall usefulness of following this

methodology for development.

The rest of this section details the results for the usage of the model for permission

building and the usefulness of the model as a development model.

4.2.1 Permission Generation Results

Will following the SADM methodology result in a minimal number of permissions set

for an Android application? This is the question attempting to be answered by this study.

As previously said ”minimal” refers to the number of permissions needed so that every

functional requirement is addressed. In this study each participant was given requirements

(as specified in section 4.1.1) for an application to be built. The application is an Android

based application that allows users on two different devices to send messages to each other

and share files with one another. Each participant built the application following the de-

velopment strategies of the proposed methodology. The participants were then given a

post-test survey to fill out. This survey allowed the participants to report on their usage of

the model and how effective it was at guiding the permission gathering for the application.

The survey was returned with a list of the resulting permissions designed to the researcher.

69

www.manaraa.com

The iterative refactoring process of the model is the main part of determining the re-

sulting permissions. The combination of resulting permissions was taken into account with

how many times each participant needed to iterate through and redesign his or her permis-

sions. Question 9 (Q9) of the survey asks the participants if any time was spent reevaluating

the application’s final permission list with the one that they built before development. Each

participant reported that he or she had to refactor at least one time to get their final permis-

sion list. Each participant’s permission list was compared to the researcher’s expected list

and every participant reported had a match. This researcher defines a match as a partici-

pant’s final permission list exactly matching the expected permission list generated by the

researcher prior to running the experiment. Table 4.5 summarizes these results.

Table 4.5

Permission Results Summary

Subject
Final permissions compared

to expected permissions
Number of times reevaluating

permissions

1 Match 1
2 Match 3
3 Match 1
4 Match 1
5 Match 2
6 Match 1
7 Match 2
8 Match 1
9 Match 3
10 Match 1
11 Match 1

70

www.manaraa.com

Most of the participants only had to reevaluate one time. Each participant reported

that before development, a list of permissions was determined to satisfy the requirements.

Upon reaching the reevaluation phase, each participant was able to remove permissions not

in use and design a new set of permissions for the application. Each participant reported

their beginning permission list along with their final permission list. Table 4.6 shows the

comparison of beginning and ending permissions.

Table 4.6

Initial versus Final Permission List

Subject
Number of Initial

Permissions
Number of Final

Permissions

Number of times
reevaluating
permissions

1 10 5 1
2 10 5 3
3 10 5 1
4 10 5 1
5 9 5 2
6 11 5 1
7 10 5 2
8 9 5 1
9 8 5 3
10 10 5 1
11 10 5 1

Every participant reported having a higher number of permissions determined prior to

application development. After spending as few times as one reevaluation process, the

number of permissions was dropped to five total.

71

www.manaraa.com

Question 11 on the survey asks the participants to determine if every permission imple-

mented in the application corresponded to functionality given by the requirements. Every

participant reported that each permission is corresponded to at least one functionality of

the application. This can be seen by the fact that each participant started with more per-

missions than necessary and through refactoring got them trimmed to a fewer number.

Questions 5 and 12 on the survey both address the issue of using the SADM method-

ology to get these permissions. As reported above, each participant was able to trim down

the total permissions being used while going through the development process. These two

questions allow for the participants to report on how effective the model was at providing

them the way to get the final permission list. Tables 4.7 and 4.8 summarize the results of

these questions.

Table 4.7

Effectiveness for planning permissions

Q5:How effective was SADM at making the development process plan
out the permissions used by the application?

Option Fequency/Percentage
Not effective 0/0%
Slightly effective 0/0%
Somewhat effective 2/18%
Very effective 6/55%
Extremely effective 3/27%

The participants all reported that using the SADM was very helpful and very effective at

planning out and determining the permissions of the application. The participants reported

72

www.manaraa.com

Table 4.8

Planning permissions before implementation

Q12:How much did it help to plan out the permissions before
programming began on the application?

Option Fequency/Percentage
Not helpful 0/0%
Slightly helpful 0/0%
Somewhat helpful 1/9%
Very helpful 9/82%
Extremely helpful 1/9%

that by using the model, they were able to determine what permissions were necessary

and reduce the number of permissions open. The resulting applications built during testing

ended up with fewer permissions open than if the application was built through with one

iteration.

4.2.2 Permission Generation Analysis

Each participant was given the same requirements and details for the same application

to build. Using the SADM for development, each participant was successful at building the

application. Each participant returned a list of pre-development permissions and a list of

final permissions. It has been shown that each participant developed a list of permissions

that was unsatisfactory during the building of the application. The participants all ended

with a matching set of permissions to what the researcher expected. No participant was able

to generate the correct permissions from the start and had to iterate through the permission

evaluation process at least once.

73

www.manaraa.com

The model provided the process by which the participants were able to reevaluate the

permission list. The iterative process when this reevaluation occurs gave each partici-

pant the opportunity to trim down his or her initial permission list. Most participants had

to reevaluate only once. None of the participants reported determining the minimal per-

mission list prior to implementation of the application. Each participant took the general

requirements and decomposed them into more specific ones. A list of permissions that

could possibly satisfy the requirements was generated. Each participant had to reevaluate

the ending permission list compared to the functional requirements.

The SADM was reported as being overall effective with providing the participants with

the ability to plan out the permissions. By combining the reported level of effectiveness, the

participants felt the SADM was at gathering permissions with the fact that each participant

reevaluated their set of permissions at least one time, we can see that the participants did

not just guess at the permissions. The participants were able to determine the appropriate

permissions by iteratively evaluating the permissions against the functional requirements.

4.2.3 SADM Usage Results

The SADM is a software development model and as such needs to be practical for such

usage. No matter how effective it is for refining a list of permissions, the model will not

be used if it interferes with the development process. The survey given to the participants

allowed each one to rate how effective using the model was in the overall development

process. The goal of these questions is to gather insight into how developers use the model

for their development. Tables 4.9-4.14 summarize this information.

74

www.manaraa.com

The participants all were given the requirements of the application. All participants

have experience in software development. While actual development on Android was not

as experienced by the participants, they all understood how to take requirements and build a

final product at the end. Before explanation of the SADM, each participant was given some

time with the requirements to figure out a plan of development. Three of the participants

responded to the researcher that they had no real plan for the application and would just

”wing it”. Six participants responded with gathering a list of possible permissions and

opening them for development. Two responded with using the group permissions instead

of individually opening each one.

Table 4.9

Planning strategy before test

Prequestion:What plan do you have for development?

Synthesised response Fequency/Percentage
”Just Wing It” 3/27%
Gather a master list of possible permissions to open 6/55%
Use Group Permissions 2/18%

The first group of participants had planned on coding the application and enabling

what they needed when they needed it. This process lent itself to the possibility of hav-

ing the fewest possible permissions set for the application. However, there is no way to

know certainly that it is the fewest number without some way to reevaluate and rework

the permissions. The second group proposed to go through and get one master list of all

75

www.manaraa.com

permissions that could possibly be used and open them. There was no plan given by these

participants to remove permissions later that were not currently being used. This would re-

sult in an application with many open permissions many of which would not be used. The

last group planned on using the group permissions. The reasoning is that group permis-

sions generalized different permissions together and resulted in fewer permissions being

set. As explained earlier, while the developer has to make fewer calls to the group permis-

sions, there are not fewer permissions set. It opens a whole group of permissions even if

they are not all being used.

The participants had enough information to make the general decisions for preplanning

but none of their strategies could guarantee minimal usage of permissions. After the initial

planning, the SADM was explained to each person. Testing began after each participant

understood how to follow the model. In the survey, each participant was able to rate how

their experience was with using the SADM for development. In question 2, the participants

rated how difficult it was to understand and follow the proposed model.

Table 4.10

Understanding and Following the SADM

Q2:How difficult is SADM to understand and follow?

Option Fequency/Percentage
Not difficult 6/55%
Slightly difficult 5/45%
Somewhat difficult 0/0%
Very difficult 0/0%
Extremely difficult 0/0%

76

www.manaraa.com

Table 4.10 shows the results for question 2 of the survey. Fifty-five percent of the

participants all reported that it was not difficult at all to understand the model. Forty-

five percent of the participants reported that it was slightly difficult to understand. The

model seemed to be easy to understand and follow for development. By making it easy

to understand, it makes it easier for developers to use the model for software application

development.

The next question asked how feasible do the participants feel the SADM is for devel-

opment of Android applications. This is a software development model but it specifically

targets the Android platform. Question 3 allowed the participants to address this concern.

Table 4.11 shows the responses to this question.

Table 4.11

Feasibility of the SADM

Q3:How feasible is SADM in the development of Android applications?

Option Fequency/Percentage
Not feasible 0/0%
Slightly feasible 0/0%
Somewhat feasible 1/9%
Very feasible 8/73%
Extremely feasible 2/18%

Mostly the participants felt that it was very feasible to use the model for Android devel-

opment. Nine percent felt that it was somewhat feasible; 73% felt that it was very feasible;

and 18% felt that it was extremely feasible. The ability to use the model for development is

77

www.manaraa.com

a major concern for any development model. By saying the SADM is very feasible to use

for development allows it to be more readily usable by developers. No correlation could

be found between how feasible it was to use the proposed model and the level of previous

Android experience the participant had. The participant who felt it was somewhat feasible

had reported none for previous experience with Android development. In contrast one of

the two participants who reported extremely feasible also had reported none for previous

experience with Android development as well.

The participants report that the proposed model is feasible to be used in Android de-

velopment and is easy to understand. All software development models add steps but they

cannot be viewed has a hindrance to the process or the model will never be used. Question

4 of the survey address this concern and the results are shown in table Table 4.12.

Table 4.12

Difficulty Using the SADM

Q4:How difficult did SADM make the application development process?

Option Frequency/Percentage
Not difficult 11/100%
Slightly difficult 0/0%
Somewhat difficult 0/0%
Very difficult 0/0%
Extremely difficult 0/0%

78

www.manaraa.com

All 100% of the participants reported that it added no difficulty to the development

process. Using the SADM was used and did not interfere with the participants’ ability to

develop the application during testing.

Each participant was asked to give his or her opinion on the strength and weaknesses

of proposed model. Question 7 and question 8 ask for this information and are presented

in table Table 4.13 and table Table 4.14 respectively. In these tables, each participant’s

response was condensed into a general concern. Each concern was given a response from

one participant to show how the participants responded to the question. While different

participants have different responses phrased, similar responses are condensed to a general

response.

Table 4.13

Strengths of the SADM

Q7:What strengths does the SADM have for the application
development process?

Response Summary Frequency/Percentage Sample Response
Understanding how to
select permissions

3/27%
Knowledge of what certain

permissions do

Application built with
few permissions

7/64%
The finished app will be more

appealing with fewer
permissions

No unused permissions 1/9%
Creates secure applications

without unnecessary
application permissions

79

www.manaraa.com

Each participant responded with the strength of the SADM being how it handles per-

mission generation. Twenty-seven percent of participants feel that the SADM provides

the developer with the ability to understand how to select the permissions. Sixty-four per-

cent of participants reported that the strength of the SADM is applications build using this

process results in the fewest permissions needed. Nine percent of the participants felt the

strength of the model is that the resulting application had no unused permissions.

Question 8 asked the participants to describe the weakness of the proposed methodol-

ogy. The results are presented in Table 4.14. Similar to table Table 4.13, each response

was group into similar categories and summarized. Each category is presented along with

a sample response that belonged to the category.

Table 4.14

Weakness of the SADM

Q8:What weaknesses does the SADM have for the application
development process?

Response Summary Frequency/Percentage Sample Response
none 4/36% ”None observed”

Easy to get distracted
from main development

5/46%
”Spent too much time over

compensating on permissions
that we would later not need”

Intermediate steps should
test the permissions.

2/18%

”I think there should be some
intermediate processes to

insure necessary permissions
are present”

80

www.manaraa.com

The participants responded with a weakness and the responses were grouped together.

Thirty-six percent of participants responded with no weaknesses. Forty-six percent of

participants felt that it was easy to get too distracted by the permissions and lose focus on

building the actual application. Eighteen percent of participants feel that iterating through

the process was extraneous. These participants suggested that having more intermediate

steps for checking the permissions would work better. Answering these questions provided

the researcher with an understanding of how well the SADM works as a development

model. The participants all responded positively with respect to using the proposed model

for future development of Android applications.

4.2.4 SADM Usage Analysis

Each participant used the SADM to develop an application from requirements to final

product. Section 4.2.2 presented the results of the application built using the proposed

methodology. While using the model allowed the participants to build applications with

minimal permissions, a development model must also be usable for the software develop-

ment process. In addition to reporting on the permissions generated for the final product,

each participant also reported on their usage of the proposed model.

It is of interest to note how difficult it is by software developers to use the SADM

and how effective it is at building Android applications. The participants all reported that

the model was easy to use and useful in the development process. The SADM provided

the guidance the developers needed to understand the permission system of Android and

provided the method needed to map functional requirements to permissions. By applying

81

www.manaraa.com

an iterative approach to requirements mapping, the developers were able to generate a

minimal set of permissions the application needed to use. This is the biggest strength

reported by the participants the SADM gives developers. The participants all reported

using the SADM gives the developer minimal permissions to satisfy the requirements.

This is done by understanding how the permissions work and by forcing the developers to

spend time mapping requirements to permissions.

The SADM methodology is not immune to problems. The participants reported on

the weaknesses of the proposed model. Due to the nature of reworking permissions of an

application, the big weakness of the SADM is how much time is spent on just permission

mapping. Many of the participants felt it is easy to get lost in permission gathering. The

proposed model utilizes an iterative approach by reevaluating the permissions and start-

ing back at the beginning. Iterating through the whole process many times can be time

consuming and is a weakness that can be addressed.

4.3 Main Hypothesis and Research Questions Results

The hypothesis of this dissertation is that by following the methodology modeled by

the SADM, developers will be able to produce an application with minimal permission

being used. For the test, the researcher built an application designed to send messages

between devices as well as share files between the two. By iterating through the design,

the researcher produced an application with a set of permission, such that removal of any

permission would remove functionality from the application. The requirements for this

application was given to participants to test the SADM. Every participant was able to gen-

82

www.manaraa.com

erate a list with the exact same permissions as the one determined by the researcher. Each

participant did start with a larger permission list then what they finally ended with. By

using the SADM, each participant was able to remove useless permissions until all that re-

mained was the minimal set needed to achieve functionality. Each participant successfully

built an application with the predetermined minimal permissions.

The surveys answered provided the researcher with information answering the research

questions asked to validate the usefulness of the SADM as a software development model.

4.3.1 Is the model easy to use?

It is reported by the participants that the model was easy to use. For any software

development model to be effective it has to be used by the developers. A model that is

easy to understand is more likely to be used by developers. Each participant felt that the

model was clear and easy to understand. The participants felt that the model was feasible

to be used for Android development and felt that it added no more difficulty to the overall

process. The model guides the developers in decomposing requirements to a base form

that can be used by a certain permission or set of permissions. The participants were able

to follow this process and not have it interfere with the development process.

4.3.2 Does the model help with determining what permissions to use ahead of time?

The SADM provided the participants with the methodology to map functional require-

ments to different permissions. Each participant built a list of permissions at the beginning

of development but had to reevaluate their list. Their lists were trimmed down to the appro-

priate permissions. This worked in context of providing the minimal set of permissions, but

83

www.manaraa.com

they still had a different set before development. The participants were able to map permis-

sions to requirements. However, once the participants began implementing the application

they began to understand how some permissions were not necessary. This resulted in the

reevaluation cycle to get a new set of permissions for implementation. The SADM did

provide assistance in determining permissions ahead of time even if it was different from

the final list.

4.3.3 Does the model result in developer specified minimal permission usage?

The participants all reported the same five permissions needed for the application.

These permissions were the same ones determined prior to testing by the researcher. Each

participant reported their set of permissions determined prior to implementation and deter-

mined upon completion. Every participant needed to iterate through permission acquiring,

but they were able to end with the same five permissions expected. These permissions were

generated by the participants by using the proposed model and every application tested uti-

lized the same minimal set of permissions.

4.3.4 Can minimal permission usage be built in from the beginning of development?

The SADM did not appear to build the minimal permission base at the very beginning

of development. While the SADM does provide the means to determine different permis-

sions based on the functional requirements, it does not provide a way to know exactly

how the permissions will be utilized prior to implementation. Most of the participants re-

ported little to no prior experience developing applications on Android with a few reporting

higher. The more experienced Android developers were expected to have a better under-

84

www.manaraa.com

standing what permissions were needed prior to implementation. There was no observable

correlation between prior Android experience and the ability to determine permissions at

the beginning of development.

4.3.5 Can the model be used by someone with little to no prior experience with ap-
plication development on Android?

All of the participants had experience with software development in general. Their

specific experience with Android development was scattered with most reporting little to

none. Each participant reported the ability to easily use the model to develop applications

for Android. The model guided their development process for people with no experience

with Android development. The SADM provided the mechanism to map the functional

requirements to the permissions. It was thought that participants with higher levels of

experience with Android would not follow the model as strictly. From the surveys filled

out, there is no correlation between the usability of the model between those with high

Android experience and low Android experience.

4.3.6 Research Question Summary

The surveys provided answers to the research questions and was discussed above. Ta-

ble 4.15 summarizes the research questions. These research questions are listed with the

expected outcome and the actual outcome.

The table summarizes the research questions of this dissertation. The information was

gathered from the survey done post application development. The survey was compared

to the resulting list of permissions to answer the questions. The next chapter discusses the

85

www.manaraa.com

Table 4.15

Research Question Summary

Research Question Expected
Result
compared to
expected

Survey
Question

Is the model easy to
use?

The model will be
easy to follow and use
for development

Yes Q2,Q3,Q4,Q6

Does the model help
with determining
what permissions to
use ahead of time?

The model will
provide a way to
determine permissions
at the beginning of
development

Yes Q5,Q12

Does the model result
in developer specified
minimal permission
usage?

Use of the SADM will
result in minimal
permissions

Yes Q11

Can minimal
permission usage be
built in from the
beginning of
development?

Through proper
decomposition of
requirements the
minimal set of
permissions can be
determined at the
beginning of
development

Every
participant had
to redesign
permissions at
least once

Q12, Q9,
Comparing
initial list to
final list

Can the model be used
by someone with little
to no prior experience
with application
development on
Android?

The model can be
used by anyone
regardless of prior
Android experience

Yes Q1, Q4

Does the amount of
previous experience
have an affect on
usage of the proposed
model?

Developers with less
experience will have
an easier time using
the model

Every
participant had
easy time with
model

Q1, Q4

86

www.manaraa.com

conclusions drawn from this experiment as well as future work where the weaknesses of

the SADM are addressed.

87

www.manaraa.com

CHAPTER 5

CONCLUSION

This chapter presents conclusions based on the analysis of the resulting information

gathered from the experiment. Contributions of the defined model along with an avenue

for future research are discussed in this chapter.

5.1 Contribution

The Secure Android Development Model (SADM) proposed in this dissertation pro-

vides a methodology to developers that restricts the usage of permissions in Android ap-

plications. Review of the literature revealed that attempts at Android security focused on

protecting devices from applications installed. These applications are both intentionally

malicious and non-malicious. The non-malicious applications tend to be faulty and poorly

designed allowing for exploitation by other applications. The proposed model attempts to

solve the problem of poorly designed applications being exploited by removing exploita-

tion avenues during development.

After development of the proposed model, the researcher began by conducting a pre-

liminary case study for verification of the model. This was accomplished by examining

twenty different applications from the Android app store all of which had similar function-

ality. The applications chosen were a group of file sharing and messaging apps. From these

88

www.manaraa.com

apps, the researcher gathered a list of commonly used permissions and classified them into

used ones and unused ones. After classification of permissions, the researcher began de-

velopment of an application which allowed for messaging and file sharing using the same

permissions used by these other applications. Following the model, the researcher was able

to reduce the permissions down to a select group. Removal of any permission would break

functionality of the application.

The created application became the control for participants testing the model. Upon

completion and verification, the researcher gathered 11 volunteers and provided the re-

quirements for the application. The participants were then given the development model

and a lecture to its meaning and workings. The participants were given a survey upon com-

pletion of the application. Each participant provide a list of initial permissions and final

permissions along with the completed survey to the researcher. It was shown that by using

the development model and iterating through it at least once, each participant was able to

build the application with the same set of final permissions as the researcher. Analysis of

the model itself was performed from the information provided by the surveys to validate

the usefulness of the SADM as a software development model.

The SADM contributes to the field of information security because it is a development

model focused on minimizing permission usage. While plugins have been built to assist

developers in selecting permissions[32], they are insufficient in providing the necessary

capabilities of the designer to reevaluate which permissions are needed. Developers relied

on guessing what permissions they would need for development. This led to grabbing many

different permissions if there was a small chance it would be needed. Utilizing the SADM

89

www.manaraa.com

allowed the participants to develop the application and work through which permissions

are necessary and eliminating the ones that are not.

5.2 Publication Plan

The following paper from this work have been submitted for peer review: Refereed

Conference:

C. Ivancic and D. Dampier, ”A Developer’s Guide to Android Security: Building Se-

curity in Your Apps”. To be reviewed at the 24th International Conference on Software

Engineering and Data Engineering (SEDE) 2015.

The following paper is planned to be submitted for journal publication Refereed Jour-

nal:

C. Ivancic and D. Dampier, ”Secure Android Development: A Methodology for Build-

ing Security into Your Android Applications”. Will be submitted to Pervasive Mobile

Computing special issue on Mobile Security, Privacy and Forensics.

5.3 Future Research

Through testing it was discovered that the developers can spend much of their time

reevaluating the permissions. The iteration process takes the developers back through the

development cycle starting at the beginning with mapping requirements to permissions.

This resulted in some participants feeling that too much time was spent cycling through

the model many times. One potential solution to this problem is to modify the model

implementation to allow for more rapid redesigning of the permissions during the imple-

mentation phase. Research can be done by modifying the existing model implementation

90

www.manaraa.com

and running tests again attempting to determine how much less time is spent by not having

to repeat the whole process again.

The proposed methodology is implemented as a model designed specifically for the

Android platform. Each smartphone OS has its own implementation of permissions and

application interaction. The idea of using permissions to allow for applications to com-

municate is used in many different; however, it is different for each OS. Research can be

done to build upon the existing model to allow for a more generalized model. The idea of

designing the model to be more generalized is to allow for a standard methodology to be

used by developer of any mobile device OS.

For this dissertation, each participant was asked for his or her previous experience with

Android development. No significant difference was observed from the results of those

with high experience in Android programming versus those with low to none. For the

most part, the participants report a low to no level of previous experience programming

apps for Android. A test can be designed to test groups of developers with high experience

with Android and test groups with low level of Android programming. A comparison of

these results will give more insight as to the effectiveness of the model given a previous

level of Android experience.

91

www.manaraa.com

REFERENCES

[1] “Android API Overview, Android documentation ,”, http://developer.
android.com/preview/api-overview.html, 2014, Accessed: 22 May
2014.

[2] H. Banuri, M. Alam, S. Khan, J. Manzoor, B. Ali, Y. Khan, M. Yaseen, M. N. Tahir,
T. Ali, Q. Alam, et al., “An Android runtime security policy enforcement framework,”
Personal and Ubiquitous Computing, vol. 16, no. 6, 2012, pp. 631–641.

[3] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A methodology
for empirical analysis of permission-based security models and its application to an-
droid,” Proceedings of the 17th ACM conference on Computer and communications
security. ACM, 2010, pp. 73–84.

[4] D. Barrera and P. Van Oorschot, “Secure software installation on smartphones,” IEEE
Security & Privacy, vol. 9, no. 3, 2011, pp. 42–48.

[5] M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck, and C. Wolf, “Mobile
security catching up? revealing the nuts and bolts of the security of mobile devices,”
Security and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp. 96–111.

[6] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry, “Poster:
the quest for security against privilege escalation attacks on android,” Proceedings of
the 18th ACM conference on Computer and communications security. ACM, 2011,
pp. 741–744.

[7] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-based mal-
ware detection system for android,” Proceedings of the 1st ACM workshop on Secu-
rity and privacy in smartphones and mobile devices. ACM, 2011, pp. 15–26.

[8] P. S. S. Council, “PCI Mobile Payment Acceptance Security Guidelines for Devel-
opers,” PCI Mobile Payment Acceptance Security Guidelines, version 1.0, 2012.

[9] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege escalation at-
tacks on android,” Information Security, Springer, 2011, pp. 346–360.

[10] W. Enck, “Defending users against smartphone apps: Techniques and future direc-
tions,” Information Systems Security, Springer, 2011, pp. 49–70.

92

www.manaraa.com

[11] W. Enck, M. Ongtang, P. D. McDaniel, et al., “Understanding Android Security.,”
IEEE security & privacy, vol. 7, no. 1, 2009, pp. 50–57.

[12] E. Erturk, “A case study in open source software security and privacy: Android
adware,” Internet Security (WorldCIS), 2012 World Congress on. IEEE, 2012, pp.
189–191.

[13] H. Estler, M. Nordio, C. A. Furia, B. Meyer, and J. Schneider, “Agile vs. struc-
tured distributed software development: A case study,” Global Software Engineering
(ICGSE), 2012 IEEE Seventh International Conference on. IEEE, 2012, pp. 11–20.

[14] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of mobile
malware in the wild,” Proceedings of the 1st ACM workshop on Security and privacy
in smartphones and mobile devices. ACM, 2011, pp. 3–14.

[15] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid: Automated Security Certi-
fication of Android,” 2009.

[16] A. Goode, “Managing mobile security: How are we doing?,” Network Security, vol.
2010, no. 2, 2010, pp. 12–15.

[17] C. T. Hager and S. F. Midkiff, “An analysis of Bluetooth security vulnerabilities,”
Wireless Communications and Networking, 2003. WCNC 2003. 2003 IEEE. IEEE,
2003, vol. 3, pp. 1825–1831.

[18] A. A. Janes and G. Succi, “The dark side of agile software development,” Pro-
ceedings of the ACM international symposium on New ideas, new paradigms, and
reflections on programming and software. ACM, 2012, pp. 215–228.

[19] W. Jansen and K. Scarfone, “Guidelines on cell phone and PDA security,” NIST
Special Publication, vol. 800, 2008, p. 124.

[20] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Representing and rea-
soning about preferences in requirements engineering,” Requirements Engineering,
vol. 16, no. 3, 2011, pp. 227–249.

[21] C. Marforio, A. Francillon, S. Capkun, S. Capkun, and S. Capkun, Application col-
lusion attack on the permission-based security model and its implications for modern
smartphone systems, Department of Computer Science, ETH Zurich, 2011.

[22] C. Miller, “Mobile attacks and defense,” Security & Privacy, IEEE, vol. 9, no. 4,
2011, pp. 68–70.

[23] M. Ongtang, K. Butler, and P. McDaniel, “Porscha: Policy oriented secure content
handling in Android,” Proceedings of the 26th Annual Computer Security Applica-
tions Conference. ACM, 2010, pp. 221–230.

93

www.manaraa.com

[24] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel, “Semantically rich
application-centric security in Android,” Security and Communication Networks,
vol. 5, no. 6, 2012, pp. 658–673.

[25] P. Ragunath, S. Velmourougan, P. Davachelvan, S. Kayalvizhi, and R. Ravimohan,
“Evolving a new model (SDLC Model-2010) for software development life cycle
(SDLC),” International Journal of Computer Science and Network Security, vol. 10,
no. 1, 2010, pp. 112–119.

[26] B. Reed, “A Brief History of Smartphones,” PC World (2010).

[27] M. Rogowsky, “More Than Half Of Us Have Smartphones, Giving Apple And
Google Much To Smile About ,”, http://www.forbes.com/sites/markrogowsky/2013
/06/06/more-than-half-of-us- have-smartphones-giving-apple-and-google-much-to-
smile-about/, 2014, Accessed: 10 August 2014.

[28] N. B. Ruparelia, “Software development lifecycle models,” ACM SIGSOFT Software
Engineering Notes, vol. 35, no. 3, 2010, pp. 8–13.

[29] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “Andromaly: a be-
havioral malware detection framework for android devices,” Journal of Intelligent
Information Systems, vol. 38, no. 1, 2012, pp. 161–190.

[30] W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima, and T. Tanaka, “A small but non-
negligible flaw in the Android permission scheme,” Policies for Distributed Systems
and Networks (POLICY), 2010 IEEE International Symposium on. IEEE, 2010, pp.
107–110.

[31] J. Srinivasan and R. Agila, “Software Development Life Cycle Model Incorporated
with Clemency Brass,” In International Journal of Innovative Research in Advanced
Engineering (IJIRAE), vol. 1, no. 4, 2014.

[32] T. Vidas, N. Christin, and L. Cranor, “Curbing android permission creep,” Proceed-
ings of the Web, 2011, vol. 2.

[33] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Malicious android applications in
the enterprise: What do they do and how do we fix it?,” Data Engineering Workshops
(ICDEW), 2012 IEEE 28th International Conference on. IEEE, 2012, pp. 251–254.

94

www.manaraa.com

APPENDIX A

PARTICIPANT DEMOGRAPHICS

95

www.manaraa.com

96

www.manaraa.com

APPENDIX B

PARTICIPANT INFORMED CONSENT FORM

97

www.manaraa.com

98

www.manaraa.com

99

www.manaraa.com

APPENDIX C

PARTICIPANT POST-SURVEY QUESTIONS

100

www.manaraa.com

101

www.manaraa.com

102

www.manaraa.com

APPENDIX D

GENERATED MANIFEST FILE

103

www.manaraa.com

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>

−<m a n i f e s t package =” c a s e T e s t . a n d r o i d f i l e t r a n s f e r ”

x m l n s : a n d r o i d =” h t t p : / / schemas . a n d r o i d . com / apk / r e s / a n d r o i d

”>

<uses−sdk a n d r o i d : m i n S d k V e r s i o n =” 14 ” />

<uses−p e r m i s s i o n a n d r o i d : n a m e =” a n d r o i d . p e r m i s s i o n .

ACCESS WIFI STATE” />

<uses−p e r m i s s i o n a n d r o i d : n a m e =” a n d r o i d . p e r m i s s i o n .

CHANGE WIFI STATE” />

<uses−p e r m i s s i o n a n d r o i d : n a m e =” a n d r o i d . p e r m i s s i o n .

INTERNET” />

<uses−p e r m i s s i o n a n d r o i d : n a m e =” a n d r o i d . p e r m i s s i o n .

READ EXTERNAL STORAGE” />

<uses−p e r m i s s i o n a n d r o i d : n a m e =” a n d r o i d . p e r m i s s i o n .

WRITE EXTERNAL STORAGE” />

−<a p p l i c a t i o n a n d r o i d : t h e m e =” @sty le / AppTheme”

a n d r o i d : l a b e l =” @s t r i ng / app name ” a n d r o i d : i c o n =”

@drawable / i c l a u n c h e r ” a n d r o i d : a l l o w B a c k u p =” t r u e ”

>

−< a c t i v i t y a n d r o i d : n a m e =” c a s e T e s t .

a n d r o i d f i l e t r a n s f e r . M a i n A c t i v i t y ”

104

www.manaraa.com

a n d r o i d : l a b e l =” @s t r i ng / app name ”

a n d r o i d : s c r e e n O r i e n t a t i o n =” p o r t r a i t ”>

−< i n t e n t − f i l t e r>

<a c t i o n a n d r o i d : n a m e =”

a n d r o i d . i n t e n t . a c t i o n .

MAIN” />

<c a t e g o r y a n d r o i d : n a m e =”

a n d r o i d . i n t e n t . c a t e g o r y .

LAUNCHER” />

< / i n t e n t − f i l t e r>

< / a c t i v i t y>

< a c t i v i t y a n d r o i d : n a m e =” c a s e T e s t . a n d r o i d f i l e t r a n s f e r .

B r o a d c a s t A c t i v i t y ” a n d r o i d : l a b e l =” @s t r i ng /

t i t l e a c t i v i t y b r o a d c a s t ” a n d r o i d : s c r e e n O r i e n t a t i o n =”

p o r t r a i t ”> < / a c t i v i t y>

< a c t i v i t y a n d r o i d : n a m e =” c a s e T e s t . a n d r o i d f i l e t r a n s f e r .

S e r v e r A c t i v i t y ” a n d r o i d : l a b e l =” @s t r i n g /

t i t l e a c t i v i t y s e r v e r ” a n d r o i d : s c r e e n O r i e n t a t i o n =”

p o r t r a i t ”> < / a c t i v i t y>

< a c t i v i t y a n d r o i d : n a m e =” c a s e T e s t . a n d r o i d f i l e t r a n s f e r .

C l i e n t A c t i v i t y ” a n d r o i d : l a b e l =” @s t r i n g /

105

www.manaraa.com

t i t l e a c t i v i t y c l i e n t ” a n d r o i d : s c r e e n O r i e n t a t i o n =”

p o r t r a i t ”> < / a c t i v i t y>

< / a p p l i c a t i o n>

< / m a n i f e s t>

106

	A Software Development Model for Building Security into Applications for the Android Platform
	Recommended Citation

	tmp.1625165283.pdf.6nmsT

